
1-1

POWER CHALLENGEarray 1

1.1 Introducing POWER CHALLENGEarray

Rapidly advancing integrated circuit technology and computer architec-tures are
driving microprocessors to performance levels that rival tradition-al supercomputers at
a fraction of the price. These advances, combined with sophisticated memory
hierarchies, let powerful RISC-based shared-memory multiprocessor machines achieve
supercomputing-class perform-ance on a wide range of scientific and engineering
applications.

Shared-memory multiprocessing refers to the singularity of the machine address space
and gives an intuitive, efficient way for users to write para-llel programs. Shared-
memory multiprocessor systems such as Silicon Graphics® POWER CHALLENGE™
and POWER Onyx™ SMPs (Symmetric Multiprocessing) have large memory
capacities and high I/O bandwidth, necessities for many supercomputing applications.
Further, these support high-speed connect options such as FDDI, HiPPI, and ATM.
Such character-istics make shared-memory multiprocessors more powerful than
traditional workstations. These systems, based on the same technology, are designed to
provide a moderate amount of parallelism at the high end, while scaling down to
affordable low-end multiprocessors.

There is a demand for larger (greater number of CPUs) parallel machines to solve
problems faster; to solve problems previously only attempted on special-purpose
computers; to solve unique and untested problems. This is particularly true for the
grand challenge class of problems, spanning areas such as computational fluid
dynamics, materials design, weather modeling, medicine, and quantum chemistry.

1-2 POWER CHALLENGEarray

1

These problems, amenable to large-scale parallel processing, can exploit computational
power offered by para-llel machines having hundreds of processors. A modular
approach for buil-ding parallel systems scaleable to hundreds of processors is to
connect multiple shared-memory multiprocessors, such as POWER CHALLENGE
systems, by a high bandwidth interconnect, such as HiPPI, in an optim-ized topology.
In addition to delivering performance as a large-scale para-llel processor, this
architecture can also serve as a powerful throughput en-gine for running applications
that exploit moderate levels of parallelism. At the same time, it provides a single
system image to users and operators.

A Modular Approach to Distributed Parallel Processing

POWER CHALLENGEarray is a distributed parallel processing system that scales up
to 144 MIPS R8000 or up to 288 MIPS R10000 microprocessors to serve as a powerful
distributed throughput engine in production envir-onments, and to solve grand
challenge-class problems in research and pro-duction environments. POWER
CHALLENGEarray consists of up to eight POWER CHALLENGE or POWER Onyx
(POWERnode) Supercomputing systems connected by a high-performance HiPPI
interconnect. Using the POWERnode as a building block, POWER CHALLENGEarray
exploits the ultra-high-performance POWERpath-2™ interconnect to form a low-cost,
modular, scaleable system. Using this unique modular approach, POWER
CHALLENGEarray creates a highly scalable system, providing more than 115
GFLOPS of peak performance, up to 128GB of main memory, more than 4GB/sec of
sustained disk transfer capacity, and more than 28TB of disk space.

POWER CHALLENGEarray therefore offers a two-level communication hierarchy,
whereas CPUs within a POWERnode communicate via a fast shared-bus interconnect,
and CPUs across POWERnodes communicate via a high-bandwidth HiPPI
interconnect. Each POWERnode comes with a suite of parallel programming software
tools already available on POWER CHALLENGE (for example, the MIPSpro
compiler, CHALLENGEcomplib, and ProDev/Workshop Application Development
Tools). Additionally, POWER CHALLENGEarray offers other software tools to aid in
developing distributed parallel programs, as well as to manage the parallel computer
from a single point of control. Figure 1-1 illustrates a four-node POWERnode POWER
CHALLENGEarray processing system.

POWER CHALLENGEarray 1-3

1

Figure 1-1 Four POWERnode POWER CHALLENGEarray systems

In contrast to traditional distributed-memory private-address-space “shared nothing”
architectures, the hierarchical POWER CHALLENGEarray approach offers several
advantages:

❑ Less work to program

❑ Improves computation-to-communication ratio of parallel applications

❑ Reduces physical memory requirements of applications

❑ Provides better load balancing for irregular problems

❑ Improves latency tolerance for coarse-grained, message-level parallelism

❑ Offers a flexible parallel programming environment, rich in several types of parallel
programming paradigms

POWERnode

P

HiPPI
switch

P P

P P P P PP

P P P

M

M

MM

M: shared memory

P: CPU

1-4 POWER CHALLENGEarray

1

❑ Provides a gradual learning path involving shared, distributed, and distributed-
shared-memory (hybrid) parallel programming for program-mers relatively new to
parallel programming

Combining Shared Memory/Message-Passing Techniques

The POWER CHALLENGEarray approach is unique among distributed com-puting
models because each individual system comprising the array is itself a parallel
supercomputer. POWER CHALLENGEarray combines the effic-iency, flexibility, and
ease of programmability features of shared-memory multiprocessing with the upward
scalability of message-passing architec-tures. This leads to a better computation-to-
communication ratio because messages are sent between systems for larger blocks of
parallel processing.

Powerful Shared-Memory POWERnode

Each POWERnode of POWER CHALLENGEarray is a Silicon Graphics POWER
CHALLENGE shared-memory multiprocessor system, supporting up to 18 MIPS
R8000/90MHz or 36 MIPS R10000 supercomputing micro-processors and providing
up to 14.4 GFLOPS of peak performance. An interleaved memory subsystem accepts
up to 16GB of main memory, and a high-speed I/O subsystem scales up to four
320MB/second I/O channels. Each POWERnode system also supports a wide range of
connectivity options, including HiPPI, FDDI, and Ethernet™.

If the number of tasks required in a parallel program is less than or equal to the
number of CPUs on a POWERnode, the shared-memory, single-address-space
programming model can be used. This provides an intuitive and efficient way of
parallel programming to the user and avoids the over-head of message-passing between
processes. Figure 1-2 on page 5 demon-strates this point. For moderately parallel jobs,
SMP-level performance can be obtained. Since there are a large number of such jobs in
a typical para-llel environment, POWER CHALLENGEarray can be used as an
efficient throughput engine for such a job mix. Additionally, users can access the entire
set of array tools and resources for POWER CHALLENGEarray.

Applications with large computational, memory, and I/O requirements that cannot be
accommodated on individual workstation-class machines (that form the basic building
blocks of traditional distributed-memory parallel machines), and that can exploit a
moderate level of parallelism are particularly well-suited for POWER
CHALLENGEarray.

POWER CHALLENGEarray 1-5

1

Figure 1-2 Efficiency of Shared-Memory Interprocess Communications

Low Communication-to-Computation Ratio

Applications having scalability or memory requirements beyond the capa-bilities of a
single POWERnode can be restructured using hierarchical pro-gramming techniques to
span multiple POWERnodes. Under this model, the tasks within a POWERnode still
communicate via shared memory and tasks between POWERnodes communicate via
message-passing. The message-passing overhead can be optimized, compared to the
computation for each message sent, since parallel tasks within a POWERnode can use
global shared memory to communicate shared data.

For many applications, domain decomposition results in maximum data locality and
data reuse, resulting in reduced intertask communication.

The programmer has the flexibility to use a single message-passing library for
communicating within and across POWERnodes. This is because message-passing
libraries use low-latency, high-bandwidth shared-memory techniques to communicate
data within POWERnodes and high-bandwidth networking protocols to communicate

Shared Memory

(GB)

Bandwidth:
1.2 GB/s

Latency: 1 µ second

CPU Cache

Shared Memory

(GB)

Bandwidth:
1.2 GB/s

Latency: 1 µ second

CPU Cache

Shared MemoryBandwidth:
1.2 GB/sec

CPU Cache

HiPPI

Up to 18 MIPS R8000

(Up to 16 GB)

Latency: 1 µ second

Up to 36 MIPS R10000

1-6 POWER CHALLENGEarray

1

across POWERnodes. Thus, POWER CHALLENGEarray offers the great advantage of
low communication-to-computation ratios for many large-scale problems while
involving no more work than traditional distributed-memory, private address-space
systems.

A Powerful Distributed Throughput Engine

Many applications, particularly in industrial computing environments, can exploit only
moderate levels of parallelism: 10-20 CPUs. Amdahl’s law, which relates the speedup
achievable by a parallel program as a function of its parallelizable portion and the
number of processors used, illustrates this point. It states:

Figure 1-3 Amdahl’s Law Equation

where f is the parallelizable fraction of the total program, and p is the number of
processors that the program uses. Assuming an infinite number of processors, the
speedup becomes 1/(1-f). Table 1-1 on page 7 plots the value of this maximum
achievable speedup for a given parallel fraction, f.

Speedup =
1

(1-f)

POWER CHALLENGEarray 1-7

1

Most real applications have some amount (in the order of 5 percent or more) of non-
parallelizable code. Using more than a moderate number of processors (10-20) for
them does not yield additional performance bene-fits. For such an application, running
on a single POWERnode with a mod-erate number of processors may be sufficient to
realize any potential bene-fit from parallelization. Hence, a typical parallel
environment will consist of some large-scale parallel applications mixed with a large
number of modestly parallel applications.

For a workload consisting of moderately parallel applications, POWER
CHALLENGEarray systems deliver very high throughput. This is because most of
these applications can be parallelized using shared-memory tech-niques and run within
a POWERnode. Combining this with Silicon Graphics parallelizing tools, the IRIX™
operating systems, and the batch processing tools available, POWER
CHALLENGEarray serves as a powerful distributed parallel throughput environment.

High-Performance Graphics Support: Interactive Supercomputing

One or more POWERnodes in POWER CHALLENGEarray can be a POWER Onyx
supercomputing graphics system for the ultimate graphics applica-tion. POWER Onyx
is the world’s most powerful supercomputing graphics system, combining advanced
RealityEngine graphics of the Onyx architec-ture and floating point performance of the

% Parallelism (f) Maximum Speedup

50% 2.0

60% 2.5

70% 3.33

80% 5.0

90% 10.0

95% 20.0

96% 25.0

97% 33.0

98% 50.0

99% 100.0

Table 1-1 Amdahl’s Law of Parallelism

1-8 POWER CHALLENGEarray

1

MIPS R10000 or R8000 CPU. The RealityEngine graphics subsystems offer the
highest performance and most advanced features of any computer graphics system,
based on a scaleable and expandable graphics architecture containing 1.2 GFLOPS of
floating-point processing power dedicated solely to the task of accelerating geo-metric
and image processing functions. POWER Onyx scales up to 12 MIPS R8000
processors or 24 MIPS R10000 with 4MB of secondary cache, deliv-ering up to 9.6
GFLOPS of peak performance. It meets wide-ranging needs of users in such diverse
fields as computational chemistry, oil and gas, molecular modeling, weather analysis
and modeling, structural and fluid dynamics, image processing, animation rendering,
and more. This combi-nation of powerful supercomputing and powerful graphics
allows users to visualize simulations immediately and interactively steer them.

A Hierarchy of Programming Models

POWER CHALLENGEarray supports fine-grained, medium-grained, and coarse-
grained parallelism. It also supports both shared-memory and message-passing
programming models, and several hybrid combinations of those two models. Shared-
memory programming typically involves the usage of the parallelizing FORTRAN and
C compilers, whereas message-passing programming typically involves the usage of
popular message-passing communication libraries such as the Message-Passing
Interface (MPI) standard and Parallel Virtual Machine (PVM). Applications may
alternatively use High Performance FORTRAN (HPF) as their parallel library.

Most applications with fine and medium-grained parallelism can be effic-iently
parallelized using easy-to-use shared-memory techniques available on each
POWERnode system. This system enables a wide range of scien-tific, engineering and
commercial applications to take advantage of shared-memory parallelism by using
parallelizing FORTRAN 77, FORTRAN 90, and C compilers.

Applications with medium and coarse-grained message-level parallelism can use the
efficient communication characteristics of shared-memory within each POWERnode
and resort to conventional message-passing between POWERnode systems. Also, many
message-passing applications previously running on workstation clusters or pure
message-passing architectures can run efficiently on a single POWERnode with little
or no modification. Common message-passing libraries such as MPI and PVM on
POWER CHALLENGEarray exploit the fast shared-memory communication path
between tasks on a POWERnode.

POWER CHALLENGEarray 1-9

1

For applications with large scalability and memory requirements, the algo-rithm can be
restructured to use the hierarchical programming model to combine the benefits of
shared memory with the upward scalability of message-passing techniques. POWER
CHALLENGEarray therefore supports several parallel programming models,
including:

• Shared-memory with n processes inside a POWERnode

• Message-passing with n processes inside a POWERnode

• Hybrid model with n processes inside a POWERnode, using a combination of
shared-memory and message-passing

• Message-passing with n processes over p POWERnodes

• Hybrid model with n processes over p POWERnodes, using a combina-tion of
shared-memory within a POWERnode system and message-passing between
POWERnodes

1-10 POWER CHALLENGEarray

1

Tools Suite: Distributed Software Development & System Management

POWER CHALLENGEarray gives you a variety of software tools, enabling you to use
it as a distributed parallel processing system and as a distributed parallel-throughput
processing engine. Each POWERnode is loaded with the original tools suite from the
POWER CHALLENGE platform, including:

❑ XFS™ high-performance, journaled filesystem

❑ NFS™ Version 3 network filesystem

❑ MIPSpro Power FORTRAN 77, MIPSpro Power FORTRAN 90 and MIPSpro Power
C compilers support automatic/user-directed parallelization of FORTRAN 77,
FORTRAN 90, and C applications for shared memory multiprocessing

❑ CHALLENGEcomplib, a comprehensive collection of scientific and math subroutine
libraries that provide support for mathematical and numer-ical algorithms used in
scientific computing

❑ ProDev/Workshop, a suite of software development tools that includes a parallel
program development tool, a parallel debugger, a parallel pro-gram profiler, and
performance-tuning tools

POWER CHALLENGEarray provides additional tools to aid in distributed program
development and distributed system management, including:

❑ HiPPI high-performance networking software

❑ Array services, array management software

❑ IRISconsole centralized server administration software

❑ Message-Passing Interface (MPI) communication software

❑ Parallel Virtual Machine (PVM) communication software

❑ Array diagnostics

Array services on POWER CHALLENGEarray provides the basis for distribu-ted
processing and system management by managing key global resources of POWER
CHALLENGEarray, and sending this information to message-passing libraries and to
other system management tools. IRISconsole pro-vides a single point of control for
administering the POWERnodes that constitute POWER CHALLENGEarray, and can
be used with system man-agement and administration tools such as IRIXPro and
Performance Co-Pilot. The array diagnostics package aids in fault diagnosis and
recovery.

POWER CHALLENGEarray 1-11

1

The most commonly used message-passing libraries, MPI and PVM, are tuned for
POWER CHALLENGEarray and are available as supported Silicon Graphics products.
These libraries provide a uniform message-passing ab-straction, but exploit the shared-
memory communication path for intra-POWERnode tasks. There is also support for
distributed memory debuggers and visualization tools. Finally, load balancing and
batch processing soft-ware tools are available to exploit POWER CHALLENGEarray
as a through-put engine and to best allocate resources to parallel programs with
varying resource requirements. Figure 1-4 on page 12 gives an overview of the main
software solutions available on POWER CHALLENGEarray.

1-12 POWER CHALLENGEarray

1

Figure 1-4 Main Software Solutions on POWER CHALLENGEarray

Hardware

Processor Segmentation
Accounting

Fair Share Scheduling

Array Services

MPI PVM

High-Performance FORTRAN

Array Diagnostics Package

CHALLENGEcomplib

Batch Scheduler (Checkpoint/Restart)

Compilers (F77, F90, C, C++, Ada)

Parallel Compilers (F77, F90, C)

Development Tools (ProDev/Workshop)

Distributed Debugging

Program Visualization

Performance Monitoring

Checkpoint/Restart

2-13

Hardware Architecture 2

This chapter describes:

❑ POWERnode

❑ HiPPI Interconnect

❑ IRISconsole

POWER CHALLENGEarray consists of up to eight POWERnodes connected by high-
performance interconnection technology in ways that can be customized to suit
communication requirements of varied problems. For POWER CHALLENGEarray,
HiPPI is the recommended interconnection technology. The high-bandwidth
characteristics of multiple HiPPI chann-els (100 MB/sec per channel) make HiPPI apt
for the relaying of large amounts of data between POWERnodes. Also, HiPPI uses
ANSI standard- conforming protocol networking technology, assuring interoperability
with other HiPPI equipment.

A switch-based interconnection topology is recommended to connect POWERnodes. A
switch-based system can dynamically shift between dif-ferent topologies (1D ring, 2D
mesh, 3D Torus) to conform to the applica-tion’s communication requirements.

POWER CHALLENGEarray also comes with IRISconsole, providing a cen-tral
controlling point for system management purposes. The core of IRISconsole consists
of Silicon Graphics Indy™ workstation with an ST-1600, the Serial Port Multiplexer,
and software for managing serial connections.

2-14 POWER CHALLENGEarray

2

POWERnodes based on POWER Onyx supercomputing graphics systems are suitable
for applications requiring leading-edge graphic performance.

POWER CHALLENGEarray has a highly flexible and scalable interconnec-tion
architecture which need not be restricted to a single topology, tech-nology, or
predefined interconnect bandwidth. The interconnection topol-ogy can scale
incrementally with additional POWERnodes, and is easily replaced when new
interconnect technology, such as ATM, becomes avail-able. All POWERnodes run
Silicon Graphics IRIX 6.1 enhanced 64-bit UNIX operating system which includes a
multithreaded kernel, the XFS high-performance journaled filesystem, and NFS version
3 networking software. Table 2-1 summarizes maximum system configurations.

Component Description

Peak Performance 115.2 GFLOPS

POWERnodes 8

Processor 288 MIPS R10000 or 144 MIPS R8000

Main Memory 128GB

Bisection BW 1.6GB/sec

Disk I/O BW 4GB/sec

RAID Storage Capacity 139.2 Terabytes

Table 2-1 POWER CHALLENGEarray Maximum System Configurations

Hardware Architecture 2-15

2

Figure 2-1 POWER CHALLENGEarray with eight POWERnodes

POWERnode

Each POWERnode is a shared-memory supercomputer, consisting of multi-ple R8000
CPU boards, interleaved memory cards, and POWER Channel™-2 I/O boards, together
with a wide variety of I/O controllers and peripheral devices. These boards are
interconnected by the POWERpath-2 bus, which provides high-bandwidth, low-latency,
cache-coherent communication be-tween processors, memory and I/O graphics
subsystems. Table 2-2 on page 16 summarizes maximum system configurations for a
POWERnode.

2-16 POWER CHALLENGEarray

2

The RealityEngine Graphics Subsystem
For applications requiring extreme graphics performance, one or more POWERnodes
of POWER CHALLENGEarray can be a POWER Onyx super-computing graphics
system. POWER Onyx creates a new paradigm for affordable, visual supercomputing.

HiPPI Interconnect

The High-Performance Parallel Interface (HiPPI) is the recommended interconnection
technology for POWER CHALLENGEarray. Each POWERnode is required to have
one or more bidirectional HiPPI interfaces. HiPPI is the industry standard for high-
bandwidth networking today in both system-to-system and system-to-peripheral
environments. Standard-ized by the American National Standards Institute (ANSI),
HiPPI is widely adopted by research, higher education, and engineering organizations
worldwide. It is a simplex point-to-point interface for transferring data at peak data
rates of 100 or 200MB/sec over distances of up to 25 meters. IRIS® HiPPI, which
provides HiPPI connectivity for Silicon Graphics mach-ines, supports the 100MB/sec
option.

The HiPPI physical layer specifies 50-pair, twisted-pair cables for distances up to 25
meters, with the 100MB/sec option using one cable and the 200 MB/sec option using
two cables. HiPPI signal lines are unidirectional to accommodate fiber-optic
implementations and crossbar switches. Control and data signals are timed with respect

Component Description

Processors 18 MIPS R8000 CPUs
36 MIPS R10000 CPUs

Peak Performance 14.4 GFLOPS

Main Memory 16 gigabytes, 8-way interleaving

I/O bus 6 POWER Channel-2 buses, each providing up to 320MB/sec I/O bandwidth

SCSI channels 40 fast-wide independent SCSI-2 channels

Disk 17.4TB disk (RAID) or 5.6TB non-RAID disks

Connectivity 6 HiPPI channels, 8 Ethernet channels

VME slots 5 VME64 expansion buses provide 25 VME64 slots

Table 2-2 POWERnode Maximum System Configurations

Hardware Architecture 2-17

2

to the continuous 25MHz clock signal. IRIS HiPPI contains two 32-bit parallel
channels clocked at 25MHz. In addition to the Framing Protocol (HiPPI-FP), which is
used by the Silicon Graphics implementation of the MPI library, TCP/IP can be layered
over HiPPI, providing a fast communication fabric for TCP/IP applications while
retaining naming, reliability, and internetworking flexibility.

The basic organization of the HiPPI information or data framing is as shown in
Figure 2-2. Connections are made in a way similar to dialing a telephone. Once a
connection is established, one or more packets can be sent from the source to the
destination. Each packet contains one or more bursts, each burst contains up to 256
words, and each word is composed of 32 bits with odd parity on each byte. Bursts
containing less than 256 words may occur only as the first or last burst of a packet.

Figure 2-2 HiPPI Data Framings

Connection ConnectionConnection

Packet Packet Packet

Burst Burst Burst

256 words of 32 bits each

2-18 POWER CHALLENGEarray

2

HiPPI signal lines are unidirectional to accommodate fiber-optic implem-entations and
crossbar switches. Control and data signals use differential ECL drivers and receivers.
The signal set includes:

• REQUEST: (1-bit) source requests a connection

• CONNECT: (1-bit) destination accepts the connection

• READY: (1-bit) destination permits the source to send a burst

• PACKET: (1-bit) brackets one or more bursts into a packet

• BURST: (1-bit) brackets 256 data words on contiguous clocks

• DATA: (32-bits) data

• PARITY: (4-bits) DATA BUS odd byte parity

• CLOCK: (1-bit) continuous 25MHz, 40 nanoseconds period

• INTERCONNECT: (1-bit) cables connected and power ON

Examples of HiPPI waveforms are shown in Figure 2-3 on page 19. In this example,
the source requests a connection by asserting the REQUEST sig-nal, supplying the I-
Field on the data bus. If the destination can accept the request, it asserts the CONNECT
signal completing the connection. Once a connection is established, single or multiple
packets may be transmitted from the source to the destination; in this example, a
packet containing two bursts is sent. Packets are delimited by the PACKET signal being
true. Packets are composed of one or more bursts, each burst having an even-bit
checksum. Either the source or the destination can break the connection by dropping
the REQUEST or CONNECT respectively; in this example, the source breaks the
connection.

Hardware Architecture 2-19

2

Figure 2-3 Typical HiPPI Waveforms

HiPPI flow control is designed to accommodate the longer distances affor-ded by
future fiber-optic-based systems. A HiPPI destination generates a READY signal to give
the source permission to send a burst of up to 256 words (1,024 bytes). The destination
can issue multiple READY signals according to its current buffering capability. These
READY signals are queued by the source so that when data transmission is desired,
round-trip handshake delays do not occur. All HiPPI source endpoints are required to
be capable of enqueuing a minimum of 63 READYs. There is no minimum
requirement for a destination’s ability to generate READYs. The source channel on the
IRIS HiPPI board can enqueue up to 65,535 READYs and the destination channel can
generate up to 255 outstanding READYs. By sending ahead and queuing READYs, the
two endpoints can optimize the throughput on their connection.

The HiPPI physical layer specifies a point-to-point link, and crossbar switches are the
most common interconnection mechanism used with HiPPI to connect multiple
devices. The HiPPI crossbar switch is an inter-connection matrix with HiPPI
interfaces, as shown in Figure 2-4. It has an aggregate bandwidth that is a multiple of
the peak data rate of any single interface. Multiple simultaneous connections can exist

REQUEST (source)

CONNECT (destination)

PACKET (source)

READY (destination)

BURST (source)

DATA (source)

I-field Data Burst 32-bit
checksum

Data Burst 32-bit
checksum

2-20 POWER CHALLENGEarray

2

through it, and since connections do not share switch resources, they can pass data
con-currently at the full HiPPI rate. Connection switching times are typically less than
1 microsecond.

Figure 2-4 Non-Blocking Crossbar Switch

Each simplex HiPPI coming into the switch can be connected to one going out. The
switch connection is made electrically at the time the HiPPI con-nection is negotiated.
If the requested destination is already connected to another source, the switch can
either reject the new request or delay satis-fying the new request. The requester can
time-out and withdraw an unsat-isfied request and then try a different destination. In
the example shown in Figure 2-4 on page 20, 0 sends to 1, 1 sends to 3, 2 sends to 3,
and 3 sends to 0. There are two requests for output port 3, and one of the con-nection
requests to 3 (2 to 3) fails, and is either rejected or queued.

IRISconsole

IRISconsole, part of POWER CHALLENGEarray, provides a central control-ling point
for the collection of POWERnodes. It is a powerful, easy-to-use central control point
which continually monitors the activities of the POWERnodes. It functions as a
console server, managing serial connectiv-ity to the POWERnodes; it also functions as

 0 1 2 3

0

1

2

3

input ports

output ports

POWERnode

X

0

1

2

3HiPPI
switch

Hardware Architecture 2-21

2

a data collection center, gathers status information, and perform intelligent actions
based on that information. In doing so, IRISconsole ties in many disjoint
functionalities that already exist to manage a collection of POWERnodes.

The IRISconsole architecture is shown in Figure 2-5 on page 22. The core of
IRISconsole comprises:

❑ Indy workstation with an ST-1600

❑ Serial Port Multiplexor

❑ Serial and SCSI cables

❑ Software to manage serial port connectivity

❑ Text-based interface to manage a cluster remotely

2-22 POWER CHALLENGEarray

2

Figure 2-5 IRISconsole Architectures

Users have the option of connecting a modem to the IRISconsole Indy Workstation
and/or connecting it to Ethernet. IRISconsole uses an easy-to-use configurable
graphical interface, allowing an operator to click a button to perform tasks such as
resetting a system or generating a Non-Maskable Interrupt (NMI), which forces a
system to generate a corefile for debugging purposes.

“Intelligent” Console for Managing Multiserver System Activity

IRISconsole monitors up to 16 POWERnodes and provides information such as:

POWER CHALLENGE

Remote Access

Modem

(optional)

Ethernet™ (optional)

RS232 serial links

User

IRISconsole

logs

Telnet

Supercomputers

ST1600

Hardware Architecture 2-23

2

• Voltage levels of the power supply

• Operating temperature

• Speed of the internal blowers

• Availability report of the servers

• System log

• Console activity by other users

• Hardware inventory of any machine

Alarms are set off if any data points are outside of established threshold values. These
alarms may be audible and/or indicated by changes in the color of a graph.
IRISconsole can notify remote operators (via e-mail or pager, for example) of the
occurrence of an anomaly and/or store a graph of it for later troubleshooting. If
ESCALL is installed as part of the service contract, then IRISconsole, upon detecting
an anomaly, will automatically start a program that facilitates the notification of the
service provider.

Each configured system is presented as a window on the screen. Transac-tions in the
window can be optionally logged; each window has scrollable history. All viewable
graphs can be saved to a file or a PostScript™ format for later inspection, printing,
debugging, or interchange across a network.

Remote Management and Diagnostics
With a modem, IRISconsole can remotely monitor and manage POWER
CHALLENGEarray off-site through a text-based or graphical interface (using a SLIP
or PPP connection). This helps system administrators watch for system conditions such
as a disk becoming full or unusual interrupts.

2-24 POWER CHALLENGEarray

2

Independent Security System
IRISconsole provides its own password-based security system (separate from the IRIX
“/and more./passwd” password mechanism). It gives you the ability to control access to
any entry point and supports security check-points at arbitrary points. You may choose
between login-based access (log-in plus password) and simple password-based access
(password only) for any checkpoint. This allows the System Administrator to securely
configure the array (to add or delete machines, for example). Also, the text-based
IRISconsole interface used for remote access restricts the user to only IRISconsole
functionality.

3-25

Software Overview 3

3.1 POWER CHALLENGEarray Software

POWER CHALLENGEarray can be used as a single large-scale central com-puting
resource or a distributed shared resource. In a production environ-ment, a single
POWER CHALLENGEarray system may be shared between different teams, users,
groups and projects. Similarly, the system may be used for running various types of
applications with different resource requirements. Managing and monitoring the
system in such an environ-ment can be a cumbersome task for the system
administrator. To fit into such an environment, POWER CHALLENGEarray is
equipped with a rich assortment of centralized system management tools that together
provide a scalable environment for efficient utilization, monitoring, and manage-ment
of the system resources. This is in addition to the suite of software development tools
that are provided to support development, debugging and performance monitoring of
shared memory, message-passing and data parallel programs on POWER
CHALLENGEarray.

Thus, tools on POWER CHALLENGEarray can be classified as follows:

❑ Native POWERnode tools

❑ Array services

❑ Distributed program development tools

❑ Distributed batch processing tools

❑ Distributed system management tools

3-26 POWER CHALLENGEarray

3

These tools are discussed below. Further details about POWER CHALLENGEarray
can be obtained from the World Wide Web at:

http://www.sgi.com/Products/PowerChallengeArray/

Native POWERnode Tools

The software environment on a POWERnode includes the following:

❑ 64-bit operating system

❑ 64-bit fast filesystem, XFS

❑ 64-bit NFS Version 3

❑ 64-bit MIPSpro compilers, supporting FORTRAN 77, FORTRAN 90, C, and C++

❑ High-performance, optimized scientific and math libraries

❑ 64-bit development environment

MIPSpro Compilers
MIPSpro compilers are the Silicon Graphics third-generation family of optimizing and
parallelizing compilers. They have comprehensive support for parallel application
development. The compilers perform a range of general-purpose and architecture-
specific optimizations to improve applica-tion performance by reducing the number of
instructions executed. This better use of the CPU’s instruction set maximizes register
use, minimizes memory references, and eliminates unused or redundant code.

A rich assortment of command-line options can leverage different combi-nations of
optimizations. In general, optimizations are spread across the compilation system for
better efficiency. The key optimizations include architecture-specific optimizations
such as software pipelining, instruction scheduling, and automatic blocking; statement
level optimizations such as array expansion, common subexpression elimination, and
global constant propagation; loop-level optimizations such as loop unrolling, loop
inter-change, and unroll-and-jam; and procedure-level optimizations such as procedure
inlining and interprocedural analysis (IPA).

MIPSpro Power compilers (MIPSpro Power FORTRAN 77, MIPSpro Power
FORTRAN 90, and MIPSpro Power C) support automatic and user-directed
parallelization of FORTRAN and C applications for multiprocessing execution. The

Software Overview 3-27

3

compilers employ automatic parallelization techniques to analyze and restructure user
applications for parallel execution. Automatic parallelization is invoked via the -pfa/-
pca flags for FORTRAN 77, FORTRAN 90, and C, respectively.

MIPSpro compilers also provide a comprehensive set of standards-based comment
directives that enable users to assist the compiler in the parallel-ization process. Users
can use these directives to provide additional infor-mation to the compiler to boost
parallel performance. User-assisted para-llelization is enabled by specifying the -mp
flag for both FORTRAN and C. The directives provide comprehensive support for
specifying and control-ling the degree and dynamics of parallel execution.

The parallelization technology is fine-tuned to take advantage of the POWER
CHALLENGE system architecture. A combination of automatic and user-assisted
parallelization can lead to substantial improvements in the performance of many
programs.

dbx, pixie, and prof

The MIPSpro compiler family also includes basic debugging and program runtime
analysis tools including dbx, pixie and prof. The source level de-bugger, dbx, facilitates
debugging of parallel programs written using FORTRAN 77, FORTRAN 90, C, and
C++. The standard profiling tool, prof, provides “program counter sampling” of an
application’s execution. Another profiling tool, pixie, provides statement-level
execution profiles by using a basic-block counting technique which provides much
finer resolu-tion than prof.

High-Performance Scientific and Math Libraries
The compilers are complemented by CHALLENGEcomplib, a comprehensive
collection of scientific and math subroutine libraries that provide support for
mathematical and numerical algorithms used in scientific computing. The key
motivation for creating CHALLENGEcomplib is to provide standard library
functionality and to improve the runtime performance of applica-tions. By
incorporating CHALLENGEcomplib routines in compute-intensive

portions of scientific and engineering applications, users can take advantage of the
performance capabilities of the underlying system without having to rewrite their
applications.

3-28 POWER CHALLENGEarray

3

CHALLENGEcomplib is a parallel implementation of the scientific and math libraries,
employing the sproc facility available on the POWER CHALLENGE platform to
create new parallel processes. CHALLENGEcomplib is similar to scientific libraries
provided by other supercomputing vendors such as the Cray SCILIB, IBM ESSL , and
Convex VECLIB. The library consists mainly of the subcomponent, complib.sgimath,
which is the hand-tuned portion of CHALLENGEcomplib and includes the following
routines:

• Basic Linear Algebra Subprograms (BLAS), levels 1, 2, and 3

• 1D, 2D, and 3D Fast Fourier Transforms (FFT)

• Convolutions and correlation routines

• LAPACK, LINPACK, and EISPACK

• SCIPORT (Portable version of SCILIB)

• SOLVERS: pcg sparse solvers, direct sparse solvers, symmetric iterative solvers,
and solvers for special linear systems.

ProDev/Workshop: Application Development Tools
ProDev/Workshop is a programming environment specifically designed to facilitate the
development of parallel programs. ProDev has the following tools to assist the
advanced developer:

ProDev/Workshop Static Analyzer

This visual source code navigation and analysis tool provides the ability to visualize
program structure and allows easy navigation through code— vital for restructuring
and re-engineering of existing software. It is helpful in porting situations, when code
being ported from other platforms will not run or compile. It provides multiple queries
into code structure, such as queries on functions, variables, and common blocks.

ProDev/Workshop Debugger (cvd)

The Workshop debugger, cvd, is a state-of-the-art, source-level, parallel de-bugger,
featuring multiple graphical views that are dynamically updated during program
execution. It is tightly integrated with the performance analyzer, providing increased
efficiency for overall program analysis. It pro-vides 15 different views into a program
and the views are dynamically updated as the user steps through the program. cvd also
provides debug-ging support for programs that have multiple processes or that have

Software Overview 3-29

3

been parallelized using shared memory (MIPSpro compilers) or message-passing
(MPI) techniques. Finally, it has three views that provide machine-level debugging:
Register View, Memory View, and Disassembly View.

ProDev/Workshop Performance Analyzer

The Performance Analyzer is an integrated collection of tools that measure, analyze,
and help to improve application performance. Tightly integrated with cvd, it allows the
user to visualize a program’s performance over sepa-rate phases of execution, and
correlate the information back to the source code. All the views show performance
statistics on a per-thread basis, and provide the ability to correlate the performance of
all threads.

ProDev/Workshop Pro MPF

Workshop Pro MPF provides a powerful visual interface into the transfor-mations of
MIPSpro Power FORTRAN 77 and MIPSpro Power FORTRAN 90 to show which
loops were parallelized, which were not, and why they were not. In all cases where a
loop could not be parallelized, it will show the user the obstacles to parallelization and
allow the user to rearrange the algorithm to circumvent those obstacles.

Array Services

POWER CHALLENGEarray supports a suite of software features known as array
services to manage and administer the array as a single system. The array services
revolve around the concept of an array session, which is a set of processes running on
different POWERnodes in an array, that are con-ceptually related as a single job.

Additional services are provided by the array services daemon, which is aware of the
configuration of the array and provides functions for describ-ing and administering it.
Array services store and manage key information about the POWER
CHALLENGEarray. The array services information can be used both by the message-
passing libraries as well as by resource manage-ment and accounting tools that fall
under the system management class of tools. Users may also access this information
via commands provided by array services.

The chief component of array services is arrayd, the array services daemon, which
runs on each POWERnode in the array. The array services daemon manages array-
related information residing in the array configuration data-base located in the local

3-30 POWER CHALLENGEarray

3

filespace. Each daemon has knowledge about one or more arrays (for cases where a
POWERnode is part of more than one POWER CHALLENGEarray system) and the
machines that comprise them.

An array services daemon running on each POWERnode performs the following tasks:

• Maintaining information about the current array configuration, and providing this
information to other commands and programs

• Determining which processes belong to a particular array session and giving that
information to other commands and programs

• Allocating global Array Session Handles (ASH)

• Forwarding commands issued by a user on a single POWERnode to all other
POWERnodes of the POWER CHALLENGEarray system

Array Sessions

Mechanisms typically used to manage multiple related processes (for exam-ple,
process groups and terminal sessions) are limited in scope to a single POWERnode,
and cannot be used for jobs with tasks running on two or more POWERnodes. Array
services provide array sessions, which correlates single-job processes running across
several POWERnodes.

An array session is a set of processes, possibly running across several POWERnodes of
a POWER CHALLENGEarray, that are related to another by a single, unique identifier
called the Array Session Handle (ASH). An ASH is a 64-bit value and can be either
local or global. A local ASH is assigned by the kernel and is guaranteed to be unique
within a single POWERnode, whereas a global ASH is assigned by the array services
daemon, and is guaranteed to be unique across the entire POWER CHALLENGEarray.
A child process ordinarily inherits the ASH of its parent when it is created, thus
becoming a member of its parent’s array session. However, it is possible for a process
to leave its parent’s array session and start a new one. This would be done by programs
such as login or rshd so that logging on to a system will effectively start a new array
session. This would also be done by batch-queuing systems so that work done on
behalf of another user will be done in its own array session. Figure 3-1 on page 31
illustrates array services for two distinct arrays, ARRAY1 (consisting of POWERnodes
1, 2, 3, and 4) and ARRAY2 (consisting of POWERnodes 4, 5, and so on), with
POWERnode4 belonging to both the arrays. Processes 1 and 2 on POWERnode1 and
process 3 on POWERnode3 belong to an array session, identified by a global ASH.

Software Overview 3-31

3

Figure 3-1 Array Services for Two POWERCHALLENGEarrays

A parallel job having tasks on different POWERnodes is thus an array session. All its
tasks can be identified via the session’s global ASH. This in-formation can be used by
a message-passing library or by system manage-ment programs to provide resource
management information to the users, and to generally control the parallel job. For
example, it can be used for killing a job or accounting for a job’s resource usage. When

ARRAY 1

ARRAY2

Process 2

Process 1

Process 3

Array Session

POWERnode1 POWERnode2

POWERnode3

POWERnode4

POWERnode5

array
services
daemon

array
services
daemon

array
services
daemon

array
services
daemon

array
services
daemon

3-32 POWER CHALLENGEarray

3

the last task on a POWERnode with a given ASH exits, a session accounting record
con-taining accumulated statistics for all of the processes that ran in the array session
(or all the tasks) on that POWERnode is written and the array session ends.

ASH
The kernel assigns a unique ASH to each new array session as its handle. This type of
ASH is referred to as a local ASH; though it is guaranteed to be unique on the local
POWERnode, it may be in use by a different array sess-ion on another POWERnode in
the same array. Hence, a local ASH is not appropriate for identifying parallel jobs
spanning more than one POWERnode. For such jobs, the array services daemon
assigns a global ASH, which is unique across an array. By arranging the same global
ASH to be associated with each process in a job, it is possible to treat the set of
processes as a single entity. When a new array session is started, it only has a local
ASH; it upgrades its handle to a global ASH either by obtaining a new global ASH
from the array services daemon (if it is the first process of the job) or via information
passed to it from its parent (if it is not the first process of the job). Once an appropriate
global ASH is established for a job, the processes on each POWERnode that started the
new array session on that node can fork off any number of children to do the required
work. These children will inherit the global ASH of this session, thus all the tasks of
the job get correlated.

Array services consist of five main components, namely the array services daemon, the
array configuration database, the array command, the ainfo command, and the array
library. Once the array services have been set up, they can be accessed by users and
programs in one of three ways: via the array or ainfo commands or via libarray library
calls. Each of the five com-ponents of array services is discussed below.

Array Configuration Database
Each array services daemon maintains information about one or more arrays,
POWERnodes making these arrays, commands executable by the daemon, and various
local options, in configuration files in its local file-space. This information is given to
other programs and commands, thus other array-oriented programs do not need
separate configuration data.

Software Overview 3-33

3

array Command
The array command is one of two main array services interfaces which lets users
specify commands for execution on a given array. It passes array commands to the
array services daemon and reports the results. While an array services daemon requires
IRIX 6.1 or later, the array command can also run under IRIX 5.3. Thus, the array
command can be used on non-POWERnodes serving as the central console interface
for the array. The array command allows users to: specify the name of the array to
direct the command to; indicate a local request; set the verbose mode on.

Arguments to the array command are the user-command and its argu-ments. The user-
command refers to an entry in each machine’s array con-figuration file, which in turn
specifies the command to execute and other information. This gives flexibility in
handling commands across an array. Additionally, since the array configuration file is
under the system admini-strator’s control, only a set of safe commands can be executed
by a user.

ainfo Command
The ainfo command is the second of two main interfaces to array services. It displays
information about arrays known to the array services daemon, and array functions.
This information, useful for interactive users and shell scripts, is displayable in formats
appropriate for either. The type of infor-mation displayed is set by the request
argument: Information about all arrays known to the array services daemon, the ASH
of a given process, information about each machine in the array specified, process
identities of processes on the local machine running in the array session, and array
session handles of global array sessions in the array specified. You can also use it to
obtain a new global ASH for the array specified.

libarray Library
libarray is the main interface to array services and comes in o32, n32, and 64-bit
versions. A program includes the array services library by using the option larray
during compilation. Library features for interacting with the array services daemon
include functions to:

• Allocate a global ASH

• Indicate whether an ASH is global or local

3-34 POWER CHALLENGEarray

3

• Request all global ASHs in a specified array

• Request information on all known arrays

• Request information on all POWERnodes in a specified array

• Describe hardware/network configurations of POWERnodes on an array

• Execute an array command from within a program.

Figure 3-2 shows you various components of array services on a POWERnode and an
Indy workstation.

Figure 3-2 Components of Array Services

Distributed Program Development Tools

Software tools to aid the programmer in effectively using POWER CHALLENGEarray
as a large parallel machine include array services, message-passing libraries MPI and
PVM, the Single Program Multiple Data (SPMD) processing language HPF, and tools
for distributed program visual-ization and debugging. The message-passing libraries
are optimized for POWER CHALLENGEarray, and take advantage of the benefits of
shared-memory multiprocessing for interprocess communication within each

array services daemon

libarray array

array
configuration
database

arrayd

POWERnode

Indy workstation

array commandarray services library

array
array command

ainfo command
ainfo

USER

Software Overview 3-35

3

POWERnode. The libraries use fast message-passing protocols to commun-icate
between POWERnodes. In addition to these optimized libraries being available from
their respective public domain sites, Silicon Graphics pro-vides its own highly-tuned
implementation of the MPI and PVM libraries.

Message-Passing Interface (MPI)
MPI is a standard message-passing library interface developed by the MPI Forum, a
broadly-based group of parallel computing vendors, parallel lib-rary writers, and
application scientists. MPI works to assimilate the most attractive features of a number
of existing message-passing systems, rather than selecting and adopting one as the
standard. The main advantages of establishing a message-passing standard such as MPI
are low-overhead, portability, and ease of use. MPI specifies a binding for FORTRAN
77 and C. Thus MPI can serve as the lower-level message-passing infrastructure for a
wide range of higher-level distributed parallel applications across different parallel
platforms.

The MPI library consists of routines for:

• Point-to-point communication

• Collective communication

• Group management

• Communicator management

• Process topologies

• Environment management

• Profiling

Silicon Graphics has adopted MPI as the primary message-passing model for POWER
CHALLENGEarray. A highly optimized, native version of MPI is available from
Silicon Graphics for POWER CHALLENGEarray.

In addition to employing an optimized shared-memory mechanism for intra-
POWERnode communication and general TCP/IP support for inter-POWERnode
communication, the Silicon Graphics optimized MPI will exploit a customized
mechanism to achieve low latency for inter-POWERnode communication. This
mechanism, called the HiPPI bypass protocol, employs several techniques to achieve
these objectives. Geared toward reducing the latency of short messages (less than
16K), this mech-anism bypasses the kernel for message exchanges across the HiPPI

3-36 POWER CHALLENGEarray

3

network. It involves a dedicated memory area in an application that is shared with the
network device and the device driver; data movement through the memory area is
managed in user space without help from the kernel, except when initializing the area.
HiPPI firmware manages flow control and security issues, which is usually handled by
the kernel. Latency for short messages is further reduced by pre-allocating send and
receive buffers and pinning them in memory. The Silicon Graphics MPI library allows
you to specify the number of such pre-allocated buffers, since this requirement may
vary.

The MPI standard does not provide support for dynamic spawning of tasks. It also does
not provide mechanisms to specify the initial allocation of processes to an MPI
computation and their binding to physical processors. The runtime environment must
therefore provide a means for the user to specify where to start the tasks of a parallel
job. Additionally, there is often a need to start jobs remotely. Silicon Graphics’ MPI
provides the command mpirun, which takes host names and numbers as arguments,
among others, to start off the user’s tasks on the machines specified. This is a flexible
MPI program launcher that provides a user with a wide variety of options for starting
an MPI program on POWER CHALLENGEarray. The Silicon Graphics MPI can
support several parallel programming models on POWER CHALLENGEarray,
including:

❑ Shared-Memory MPI Model

❑ Message-Passing MPI Model

❑ Hiearchical MPI Communication Model

❑ MPI Hybrid Programming Model

Shared-Memory MPI Model

All tasks of an MPI program run on the CPUs of a single POWERnode, employing
shared memory for communication between tasks. The number of MPI tasks may be
greater than the number of CPUs in the POWERnode.

Software Overview 3-37

3

Figure 3-3 Support for MultiParallel Memory Sharing

POWERnode

MPI Task

MPI Task

MPI Task

MPI Task

Shared Memory

3-38 POWER CHALLENGEarray

3

Message-Passing MPI Model

The tasks of an MPI program run on CPUs across several POWERnodes, with one or
more tasks running on each POWERnode. Tasks within a POWERnode employ shared-
memory for communication with each other, and sockets for communicating with tasks
on other POWERnodes. This is the most general-purpose model for MPI programs that
can be run with no modifications across different architectures.

Figure 3-4 Message-Passing MPI Model

MPI Task

MPI Task
MPI Task

MPI Task

Shared Memory

MPI Task

MPI Task

communication
via sockets

Shared Memory

Software Overview 3-39

3

Hierarchical MPI Communication Model

In this case, tasks within a POWERnode may be divided into several groups, with
shared-memory communication between tasks within a group, and sockets between
groups within the same POWERnode. As in other cases, tasks between POWERnodes
communicate via sockets. This model allows debugging array applications on a single
node.

Figure 3-5 Hierarchical MPI Communication Model

MPI Task

MPI Task

MPI Task

MPI Task

Shared Memory

Shared Memory

MPI Task

MPI Task

intergroup
communication

Shared Memory

Group 1 Group 2

via sockets

Inter-POWERnode
communication
via sockets

3-40 POWER CHALLENGEarray

3

MPI Hybrid Programming Model

Here the MPI library can be combined with the native shared-memory par-allelization
techniques (both compiler-assisted and explicit sproc’ing) available on POWERnode.
This model restricts the number of MPI tasks per POWERnode per job to one.
Therefore, an MPI program can start with n tasks, one on each POWERnode, where n
is the number of POWERnodes. Then each MPI task can spawn multiple threads
within each POWERnode using the native POWERnode shared-memory parallel
programming prim-itives. An MPI task (one on each POWERnode) communicates with
another MPI task via sockets, and with the threads on its POWERnode via shared
memory. This is the most general-purpose hybrid parallel programming model that
combines the benefits of the shared-memory programming model with the benefits of
the message-passing programming model.

Figure 3-6 MPI Hybrid Programming Model

MP Thread

MP Thread MP Thread

MP Thread

Shared Memory

Shared Memory

MP Thread

MP Thread

Inter-POWERnode
communication
via sockets

MPI Task

MPI Task

Software Overview 3-41

3

A 64-bit shared memory port of MPICH, the public domain implementa-tion of MPI,
is also available for POWER CHALLENGEarray from Argonne National Laboratories.
For POWER CHALLENGEarray, this implementation employs shared-memory for
intra-POWERnode communication, and sock-ets for inter-POWERnode
communication.

Parallel Virtual Machine (PVM)
PVM, originating from the Oak Ridge National Laboratory and the University of
Tennessee at Knoxville, is another message passing library used for parallel processing
across a heterogeneous collection of compu-ters. PVM allows applications to be
partitioned into multiple processes for concurrent execution on different hosts in an
environment. Each host can itself be a parallel computer, with multiple processors
connected by a pro-prietary network or shared memory.

Silicon Graphics also provides an optimized version of PVM for the POWER
CHALLENGE and POWER CHALLENGEarray systems. The Silicon Graphics
implementation of PVM is compatible with PVM 3.3.9. and uses a combination of
message-passing (socket-based TCP/IP) and shared-memory techniques to
communicate between PVM tasks. Figure 3-7 on page 42 illustrates three different
intertask communication methods used by SGI PVM 1.Ø. These methods are known as
the Non-Route-direct, Route-direct and Shared Memory methods of communication.
Each host is a POWERnode.

3-42 POWER CHALLENGEarray

3

Figure 3-7 Communication Methods in SGI PVM 1.0

Non-Route-direct Communication

By default, PVM tasks use the Non-Route-direct mode of intertask comm-unication by
exchanging data through the local PVM daemon on each host. This is illustrated by the
communication path between task #4 on POWERnode #1 and task #6 on POWERnode

Task #2

Task #4

Task #5

Task #6

Shared Memory

Shared Memory

Task #1

Task #3

Route-Direct
point-to-point
communication

PVM

PVM

Daemon

Daemon

Shared-memory
communication
within POWERnode

Non-Route Direct
point-to-point
communication

Software Overview 3-43

3

#2 in Figure 3-7. Routing messages through the local PVM daemon can increase
communication costs as a result of single-point congestion if multiple tasks within one
host need to communicate with one or more tasks on other hosts.

Route-Direct Communication

The Route-Direct method overcomes the overhead of the non-Route-Direct method
by allowing PVM tasks to communicate directly with one another without going
through the host PVM daemon. This is illus-trated by the communication path
between task #3 on POWERnode #1 and task #5 on POWERnode #2 in Figure 3-7
on page 42.

Shared-Memory Communication

PVM tasks can use message-passing, route-direct methods for interhost
communication (between different hosts) and shared-memory for intra-host
communication (within the same host). PVM speeds up interproc-ess
communication within a single host by allowing parallel processes executing on
different processors to communicate with each other by reading and writing to
shared memory. Shared-memory communication has advantages over traditional
message-passing communication:

• Global shared-memory access is several orders of magnitude faster than memory-to-
memory communication in a distributed memory architecture

• By using shared memory, processes can overcome the inefficiencies of packing and
unpacking data at the source and destination respectively that is inherited by a pure
message-passing model of communication

3-44 POWER CHALLENGEarray

3

Figure 3-8 Efficiency of PVM InterProcess Communication Using Shared
Memory

The combination of the above two advantages can result in speeding up PVM intertask
communication by several orders of magnitude. By using PVM in a distributed shared-
memory environment, applications can be partitioned to take advantage of shared-
memory communication within each POWERnode and high-bandwidth message-
passing communication between POWERnodes over sockets. Thus, existing PVM
applications that have run on traditional message-passing systems can execute more
efficien-tly in a distributed shared-memory multiprocessing environment such as
POWER CHALLENGEarray.

task #1 task #2

memory 1 memory 2

pack unpack
datadata

Socket-Based Communication

task #1 task #2

memory 1

pack unpack
datadata

Shared-Memory Communication

Software Overview 3-45

3

High-Performance FORTRAN (HPF)

Although parallel computing has been widely available for more than half a decade,
scientists and engineers are still reluctant to use it. This is mainly because parallel
machines traditionally lack software systems that make them easy to use. Application
developers want to program in a standard language which is portable across a broad
range of platforms. Compilers for these standard languages should deliver high
performance consistently, so that programmers can avoid the low-level details of
managing the parallelism and the memory hierarchy unless it is absolutely necessary
for achieving the desired level of performance.

High-Performance FORTRAN (HPF) compiler development is a step toward providing
a standard, portable, high-level parallel programming model that is effective on a large
segment of parallel applications running on shared-memory MP systems, MPP
systems, clusters, and shared and distrib-uted memory hybrid machines such as
POWER CHALLENGEarray. HPF is an extended version of FORTRAN 90 that is
emerging as a standard for pro-gramming of shared and distributed-memory systems in
the data parallel style. HPF incorporates a data-mapping model and associated
directives that allow a programmer to specify how data is logically distributed in an
application. An HPF compiler interprets these directives to generate SPMD code that
minimizes interprocessor communication in distributed systems and maximizes data
re-use in all types of systems. This makes HPF an “enabling” technology with a
number of advantages, including:

• The HPF programming model makes it possible to port parallel programs and/or
write them with much more ease than with traditional non-port-able message-
passing or explicit thread calls

• HPF programs generally have a much higher assurance of being correct because the
burden of parallelization and communication between proc-esses is shifted to the
compiler. Machine-specific details such as cache sizes, number of CPUs, and
message-passing techniques are all recog-nized and used by the compiler with little
or no input from the user

• HPF programs are much easier to read and debug than explicitly written message-
passing or threaded programs

• Change in the underlying architecture can be accommodated by recom-piling the
HPF programs

3-46 POWER CHALLENGEarray

3

As an active member of the HPF standards committee, Silicon Graphics is involved in
the HPF language development and standardization efforts. Two prominent HPF
solutions available on Silicon Graphics POWER CHALLENGEarray systems are
xHPF from Applied Parallel Research and PGHPF from the Portland Group, Inc.
The HPF compilers are tightly integrated with Silicon Graphics MIPSpro 64-bit
FORTRAN compilers.

Figure 3-9 illustrates the process of converting an HPF source code into a parallel
program.

Figure 3-9 HPF Source —Parallel FORTRAN Executables

o o o

HPF

 Source Code

HPF Compiler

Silicon Graphics

Parallel FORTRAN
Executable

Parallel FORTRAN
Executable

Parallel FORTRAN
Executable

Message-Passing or Shared-Memory

F77

Software Overview 3-47

3

PGHPF

An HPF compiler for Silicon Graphics systems is available from The Portland Group,
Inc. (PGI). Features supported by the Portland Group’s HPF compiler, PGHPF, include
the following:

❑ Integration with the Silicon Graphics MIPSpro FORTRAN compilation system for
easy compile-and-go usage

❑ Fully compliant to ANSI FORTRAN 77 standard

❑ MIL-STD-1753 features (DO WHILE, ENDDO, INCLUDE, and more)

❑ Full FORTRAN 90 array syntax

❑ Allocatable arrays

❑ Modules and the MODULE and USE statements

❑ Array constructors

❑ KIND parameters in type declarations

❑ KIND specifier in literal constants

❑ Non-advancing and namelist I/O

❑ Free-form source

❑ All FORTRAN 90 intrinsics, millisecond resolution on SYSTEM_CLOCK

❑ All HPF intrinsics

❑ Multi-D ALIGN, DISTRIBUTE, TEMPLATE, and PROCESSORS support

❑ Fully general BLOCK, CYCLIC, and CYCLIC(K) distributions

❑ All of the HPF_LIBRARY module

❑ The HPF FORALL construct

❑ Calls to FORTRAN 77 local routines using EXTRINSIC (F77_LOCAL)

❑ Full support for the INHERIT directive

❑ Executables which run on an arbitrary number of processors

Interprocessor communications and synchronizations are performed using a runtime
library optimized for hybrid-shared/distributed-memory parallel systems.
Communications between CPUs inside a POWERnode use the shared-memory MPI
model, and communications between CPUs on diff-erent POWERnodes are based on
the Message-Passing MPI model.

3-48 POWER CHALLENGEarray

3

xHPF

Applied Parallel Research’s HPF pre-compiler, xHPF, is available for the Silicon
Graphics POWER CHALLENGEarray systems. Its main features include:

• APR’s FORGE® Magic technology to automatically parallelize FORTRAN 77
into an HPF program

• HPF Program consistency checking

• Parallelization of array assignments, FORALL, and DO loops

• Parallel runtime performance analysis for locating interprocessor communication
bottlenecks and load balancing problems

The xHPF precompiler utilizes a preprocessor to lower the FORTRAN 90 constructs in
an HPF Subset program to standard FORTRAN 77. The second pass of xHPF converts
this into a SPMD parallelized FORTRAN 77 program with calls to APR’s runtime
parallel library that acts as an interface to a number of common message-passing
libraries.

Because local and global consistency of HPF directives versus program con-text is
critical, xHPF includes a special pass that checks directives against the static analysis
of the program and issues diagnostics for illegally or in-consistently partitioned arrays.
It ensures that HPF directives it finds are valid. In its automatic parallelization mode,
xHPF converts a serial FORTRAN 77 program into an HPF program, utilizing APR’s
Magic tech-nology. For POWER CHALLENGEarray, the generated code facilitates the
distribution of data across the clusters of processors while using shared-memory
directives for the best performance of each cluster.

Interprocessor communications and synchronizations are performed using a runtime
library optimized for hybrid-shared/distributed-memory parallel systems. xHPF uses
the Hybrid communication model that combines both shared-memory and message-
passing programming models.

Software Overview 3-49

3

Program Visualization: Upshot & XPVM
There are two popular parallel program visualization tools available for the POWER
CHALLENGEarray systems:

• Upshot for parallel programs written using MPI

• XPVM for parallel programs written using PVM

Upshot

Upshot is a trace analysis and visualization package developed at Argonne National
Laboratory for message-passing systems: In particular, trace events can be generated
automatically by using an instrumented version of MPI. Alternatively, the programmer
can insert event-logging calls man-ually. Upshot’s display tools are designed for the
visualization and analysis of state data derived from logged events. A state is defined
by starting and ending events. For instance, an instrumented collective communication
routine can generate two separate events on each processor to indicate when the
processor entered and exited the routine. The Upshot Gantt chart display shows the
state of each processor as a function of time. States can be nested, thereby allowing
multiple levels of detail to be captured in a single display. States can be defined either
in an input file or interactively during visualization.

XPVM

XPVM is a graphical console and monitor for PVM. It provides a graphical interface to
the PVM console commands and information, along with sev-eral animated views to
monitor the execution of PVM programs. These views provide information about the
interactions among tasks in a parallel PVM program to assist in performance tuning
and debugging. The XPVM monitor views include the Network View, Space Time
View, and the Utilization View. XPVM provides basic debugging assistance via the
Call Trace View and the Task Output View. XPVM works with PVM 3.3 or later, which
is instrumented to capture tracing information at runtime. Then, any task spawned from
XPVM will return trace event information for anal-ysis in real time or for postmortem
playback from saved trace files.

Additionally, Silicon Graphics Performance Co-Pilot (PCP) graphical sys-tem-
monitoring tool provides program visualization through its procvis view, which
displays the entire set (or a subset) of processes that can be identified by a global ASH.
The section on distributed system adminis-tration discusses PCP in detail.

3-50 POWER CHALLENGEarray

3

Distributed Batch Processing and Load Balancing Tools

Distributed batch processing allows users to efficiently and transparently utilize all the
computational resources in a distributed parallel-throughput processing environment
such as POWER CHALLENGEarray. These tools match the computational
requirements of different applications with the capabilities of different resources in the
environment. Thus, applications that were previously run in a truly “waiting-for-my-
turn” batch mode on traditional supercomputers can now be submitted from
workstations, X terminals, or other clients to the POWER CHALLENGEarray
environment for immediate execution, depending on available resources. This results in
a great increase in overall job throughput. POWER CHALLENGEarray can be used as
a powerful distributed throughput engine for serial jobs and for parallel jobs employing
different levels of parallelism, while providing a single system image to users and
operators.

Figure 3-10 on page 52 illustrates the batch-queuing paradigm on POWER
CHALLENGEarray.

Features of a Distributed Batch Processing System
A distributed parallel-throughput environment supports a mixture of se-quential and
parallel jobs. This means that the distributed batch process-ing systems should have the
capacity to facilitate transparent, dynamic, and intelligent distribution of batch,
interactive, parallel jobs for maxi-mum throughput performance. Balancing
computation of large parallel jobs across different processors in the environment is
especially important to ensure that all parallel tasks are completed at the same time.
This feature is crucial for good parallel speedup.

Software Overview 3-51

3

Features of a versatile batch processing system include:

❑ A scalable, distributed batch queueing system for spawning jobs on all available
processor resources

❑ A load-balanced interactive environment

❑ Support for single and multiprocessor systems

❑ Dynamic, real-time load balancing

❑ Capacity to monitor a wide variety of system parameters, including CPU load, paging
rate, swap space, memory, interactive I/O, number of logins, and disk space

❑ Fault tolerance

❑ No modification to the operating system or existing applications required

❑ Efficient interactive I/O when interactive jobs are executed remotely

❑ Graphical user interface (GUI) for configuration management

❑ Job checkpointing and restarting

❑ Process migration facility

❑ Exclusive use of processing resources

❑ Resource allocation on a per-user or group basis

❑ Priority scheduling of batch jobs

❑ Time-of-day-sensitive host usage

❑ Run-time limits for batch jobs

❑ A secure environment

3-52 POWER CHALLENGEarray

3

Figure 3-10 Distributed Batch Processing on POWER CHALLENGEarray

Batch Jobs Batch Queues

POWER CHALLENGEarray

Distributed Powercomputing Environment

Software Overview 3-53

3

Load Balancing and Distributed Batch Processing Tools

Load Sharing Facility (LSF) and CODINE

Load Sharing Facility (LSF) from Platform Computing Corporation, Toronto, Canada,
and CODINE from Genias Software GmbH, Germany, are two prominent tools that
support batch queuing of serial and parallel jobs on Silicon Graphics POWER
CHALLENGEarray and POWER CHALLENGE systems. These also provide load
sharing across multiple POWER CHALLENGE systems in the network. They
seamlessly integrate all existing and new systems, workstations, and servers, thus
easing the introduction of new systems. Their parallel applications and multiprocessor
support en-sure optimal utilization of distributed computing resources. The sophisti-
cated scheduling and control built into these tools enable the implemen-tation of site-
specific policies for resource sharing.

Interactive, Batch, and Throughput Processing Support

These batch schedulers log detailed resource consumption data for each interactive and
batch job across POWER CHALLENGEarray, including all UNIX resource info: CPU
time, memory size, I/O, swap space, and more. Such records also give a complete list
of jobs processing in the system—by whom, when, job name and parameters, start and
end time, number of processors used, and more. These files can be used for accounting
and aud-iting purposes. These can be configured to set resource consumption limits on
jobs submitted to each queue to prevent abuse or run away jobs. Limits can be set by
the user as well. Access to the queues can be restricted to cer-tain users or machines to
discriminate among users and groups.

NQS Interoperability

These tools provide an NQS-compatible command interface. The NQS user commands
qsub, qdel, and qstat, are provided. Thus, NQS batch script files can be submitted in
order to submit, control and check jobs. These three commands are the user commands
in NQS. The administrative commands provided by the batch tools are more than
compatible with NQS...they are much more extensive—most things done in NQS can
be accomplished by using these tools, but sometimes in different ways. Both tools
interoperate with any NQS systems. Jobs can be submitted to these and automatically
routed to NQS systems for execution. The tools also extend NQS capabil-ities to
distributed systems.

3-54 POWER CHALLENGEarray

3

Configuration and Authentication Options

The batch tools support, through configuration options, a variety of auth-entication
mechanisms, including UNIX setuid, identd daemon, and Kerberos. Table 3-1
compares the feature list of both LSF and CODINE.

Features
Load Sharing
Facility (LSF) CODINE

Batch Processing YES YES

Load Balancing YES YES

Interactive Support YES YES

Transparent Interactive Remote Execution YES YES

NQS Interoperability YES YES

Shared-Memory Parallel Job Scheduling YES YES

PVM Application Support YES YES

MPI Application Support YES YES

Non-Shared File System Support YES YES

CheckPointing Support YES YES

Process Migration YES YES

Job Run-Time Limits YES YES

Job Relinking Required? NO NO

Fault Tolerant (No Single Point of Failure) YES YES

Set Execution Time and Date YES YES

Job Submission File YES YES

Withdraw Machine at Will YES YES

Return of Resources Used YES YES

User Account Required YES YES

Time of Day Sensitive YES YES

Input/Output Redirection YES YES

Calendar-Driven Job Scheduling YES YES

File Event Detection for Scheduling YES YES

Table 3-1 Load Balancing and Batch Processing Tools: Feature
Comparison Table

Software Overview 3-55

3

Support for Job Dependencies YES YES

Support for IRIX Processor Sets (pset) YES NO

Processor Limit for Jobs YES YES

Load Thresholds for Preemptive Job Scheduling YES YES

Job Limits per Queue, Processor, User YES YES

Fully Configurable Load Indices for Scheduling YES YES

Job Resource Requirements YES YES

WAN Support YES YES

Job Accounting with Analysis Tool YES YES

Project ID & Name for Job Accounting YES YES

ARRAY Session Support YES YES

Job Notification Mail YES YES

Access to Files Where Submitted YES YES

Query Job Status YES YES

FairShare Policy Scheduling YES YES

DCE Support YES YES

Andrew File System (AFS) Support YES YES

Distributed File System (DFS) Support NO YES

Kerberos Support YES YES

POSIX P1003.15/D12 Compliant GUI NO YES

Japanese Language Support YES NO

Floating Software License Checking YES YES

Features
Load Sharing
Facility (LSF) CODINE

Table 3-1 Load Balancing and Batch Processing Tools: Feature
Comparison Table

3-56 POWER CHALLENGEarray

3

Distributed System Management Tools

On a large distributed system such as POWER CHALLENGEarray, adminis-tering and
managing system resources can be a difficult task, and solutions are necessary to help
the system administrator. Several solutions are provi-ded on POWER
CHALLENGEarray for this purpose.

IRISconsole
POWER CHALLENGEarray comes with IRISconsole, comprising an Indy
workstation, a serial port multiplexor, serial and SCSI cables, software to manage
serial port connectivity, and a text-based interface to manage a cluster remotely. The
Indy workstation manages and monitors the activity of POWER CHALLENGEarray,
then stores this information. IRISconsole uses an easy-to-use configurable graphical
interface, allowing you to simply click a button to perform tasks such as resetting a
system or generating a Non-Maskable Interrupt (NMI), which forces a system to
generate a corefile for debugging purposes.

IRISconsole can monitor up to 16 POWERnodes and provide information such as:

• Voltage levels of the power supply

• Operating temperature

• Speed of the internal blowers

• Availability report of the servers

• System log

• Console activity by other users

• Hardware inventory of any machine

Each configured system is presented as a window on the screen. Transact-ions in the
window can be optionally logged; each window has scrollable history. All viewable
graphs can be saved to a file or a PostScript format for interchange across a network.
IRISconsole employs its own password-based security system, allowing the system
administrator to securely configure POWER CHALLENGEarray.

Software Overview 3-57

3

IRIXPro
Silicon Graphics IRIXPro is a layered product that simplifies the administration of
POWER CHALLENGEarray from an IRISconsole system. IRIXPro contains two tools
that are useful for administering an array of systems, Propel and Provision.

Propel

Propel is a configuration file management system. It allows an administra-tor to
centrally maintain any file, then distribute it in regular intervals. It also supports
multiple-administrator administration by moving standard IRIX configuration file
information into a database system with locking and infinite undo. Propel allows for
systems to be arbitrarily grouped into collections for the ease of administration.

Provision

Provision is a remote-monitoring facility which allows collection of vir-tually any data
source available, including SNMP, Sun RPC, ICMP, Silicon Graphics Performance Co-
Pilot, and the Silicon Graphics Objectserver. Information may be graphed in real-time
on the IRISconsole system, then logged for later playback, or used to drive a
configurable set of actions. Collection can be done for a host or an arbitrary collection
of systems.

The interfaces to both of these tools are written entirely in the scripting language Tcl so
that they can be customized to any site. Addition of data-base classes or attributes can
be simply added to the Propel editors, and alternative protocols or actions can be added
to Provision.

IRIXPro also includes a ProDev/Tracker problem tracking system, and a Dynamic Host
Configuration Protocol server. These are useful when man-aging large numbers of
workstations and users.

Performance Co-Pilot (PCP)
Performance Co-Pilot (PCP) is a system visualization graphical tool from Silicon
Graphics for monitoring, visualizing, and managing systems perfor-mance. PCP is
designed for the in-depth analysis and sophisticated control mechanisms that are
needed to understand and manage the hardest performance problems in most complex
systems, including POWER CHALLENGEarray.

3-58 POWER CHALLENGEarray

3

PCP provides a systems-level suite of tools that cooperate to deliver distrib-uted,
integrated performance management services. It has a distributed client-server
architecture, with performance data collected and exported from multiple sources, most
notably the IRIX kernel, DBMS products, layered services (such as WWW and NNTP
servers, print spoolers, mail agents), and end-user applications.

PCP is targeted at the performance analyst, benchmarker, engineering dev-eloper,
database administrator, capacity planner, or system administrator with an interest in
overall system performance. It provides the capability to quickly isolate and
understand performance behavior, resource utiliz-ation, activity levels, and
performance bottlenecks.

Dealing efficiently with the dynamic behavior of complex systems requires services to
filter noise from the stream of performance data, allowing the performance manager to
concentrate on exceptional scenarios. The ability to review previous performance data,
performance visualization, and the automated reasoning about performance data, is a
key technique suppor-ted in PCP to provide the necessary high-bandwidth filtering.

From the PCP enduser's perspective, PCP presents an integrated suite of tools, user
interfaces and services that support real-time and retrospective performance analysis.
PCP focuses attention on the exceptional and extra-ordinary performance behavior. The
user can concentrate upon in-depth analysis or target management procedures for the
critical system perform-ance problems.

PCP has been customized for POWER CHALLENGEarray to provide visuali-zation of
system-level and job-level statistics for the POWERnodes across the array. The client
portion of PCP can be run on IRIX 5.3 as well as IRIX 6.1, so an IRISconsole can be
used as a visualization client across the array. PCP can be used both for playing back
trace data or for on-line perform-ance monitoring.

PCP Utilities

An array user can view a variety of relevant performance metrics on the array via the
following PCP utilities:

• arrayvis: to visualize aggregate POWER CHALLENGEarray performance

• procvis: to visualize CPU utilization across an array for tasks belonging to a
particular global ASH

• mpvis: to visualize CPU utilization of a POWERnode

• dkvis: to visualize disk I/O rates on a POWERnode

Software Overview 3-59

3

• nfsvis: to visualize NSF statistics on a POWERnode

• pmchart: to plot general performance metrics vs. time on a POWERnode

Array Diagnostics
POWER CHALLENGEarray comprises many layered hardware and software
components. If any of these layered components are misconfigured or faulty, the
functionality of the array can be significantly reduced. In some cases, the array can be
rendered completely inoperable. POWERnode soft-ware includes an array diagnostics
package that eases the process of fault diagnosis and recovery by verifying the
integrity of a variety of crucial hardware and software components. Although the
primary purpose of array diagnostics is to ease the installation and configuration of
new POWER CHALLENGEarray systems, these may also be helpful in diag-nosing
problems on existing arrays.

The array components tested by the diagnostics package include:

❑ HiPPI

❑ IP network configuration (primary network and HiPPI)

❑ Overall system configuration

❑ Array services

❑ MPI functionality

❑ PVM functionality

Processor Segmentation
Processor segmentation, a value-added feature of the IRIX operating sys-tem, provides
a simple and flexible way to partition the available process-ors in a host to ensure
inter/intra-departmental sharing of processor re-sources in a fair way. When
segmented, each processor set can be used as a shared or dedicated resource among
different groups, users, departments, or projects. Figure 3-11 illustrates partitioning of
a 10-processor system in-to four processor sets. Each set can be used as a shared or
dedicated resource among different users, groups, projects, or departments.

3-60 POWER CHALLENGEarray

3

Figure 3-11 Processor Segmentation

Job and Session Accounting
Chargeback accounting is an integral tool for managing resource usage in a high-
throughput computing environment. The chargeback accounting and resource control
feature for POWER CHALLENGEarray systems supports re-source control and
accounting at the process level, session level, POWERnode level, and POWER
CHALLENGEarray level. Chargeback accounting is based on “actual-cost” accounting
for each array session, user, group, project, and cost center, or “proportional”
chargeback and billing on a project or department level.

The IRIX system accounting package is called PerfAcct. It collects system accounting
data for all resources utilized on a POWER CHALLENGEarray, and brings it to a
central location where it automatically summarizes the data and creates reports and
bills. These may be created by a variety of keys, including machine, group, user,
project, session, and shift. A new “session accounting” feature provides true job
accounting, allowing auto-matic chargeback of usage by any kind of job. PerfAcct
features low-over-head data collection on the systems being monitored. It also has a
graphic-al user interface for ad hoc on-line queries and for designing automatic re-
ports and bills.

This accounting tool is ideally suited for a high-throughput environment characterized
by a diversity of jobs executing on the system. Resources tracked include memory,
CPU usage (user and system usage can be tracked at global schedule intervals), disk
usage, file usage, detailed file I/O (buf-fered, direct, and count of requests), nice value,

CPU 0
CPU 1

CPU 2
CPU 3

CPU 7

CPU 6

CPU 5

CPU 4
CPU 8CPU 9

Software Overview 3-61

3

buffered and direct I/O wait times, system usage and priority, number of processes
(tracked at each request), and total system CPU allocation. Figure 3-12 demonstrates
the basic components of the accounting tool.

Figure 3-12 Chargeback Accounting on POWER CHALLENGEarray

Fair-Share Scheduling
SHARE II is an optional scheduler that allows users to be grouped into an arbitrarily
defined resource allocation and charging hierarchy. Within this structure, resource
usage policy can be set according to organizational pri-orities. Resources that can be
controlled, distributed and accurately monit-ored using SHARE II include CPU time,
disk space, processes, system mem-ory, connect time logins, printer/plotter usage, and
other user-definable resources. Renewable resources, such as CPU time and printer
pages, are shared among the competing user population as the resources become
available. Fixed quantity resources such as system memory and disk space are
constrained to defined limits regardless of competition. In any event, when the “hard

Data Receiver

Reports Bills Graphs

POWERnode #1 POWERnode #2 POWERnode #3 POWERnode #4

Data Collector nData Collector 1

Raw Accounting Data Archive

Data Collector 2 Data Collector 3

Summary Accounting Files

3-62 POWER CHALLENGEarray

3

limit” is reached, further allocation of that resource is de-nied until the user releases
some of it. Disk resources allow a further “soft limit” to warn users of their
approaching “hard limit.”

SHARE II augments the coarse-grained resource usage information available from
UNIX to accurately record the accumulated usage of all resources. This makes
preparation of fine-grained, detailed reports on resource con-sumption possible.
SHARE II actually refines the standard UNIX security mechanisms by allowing partial
delegation of administrative power, while maintaining overall control. It can also
manage user or group access to specified resources or applications under its control,
even automatically varying access at different times. Under SHARE II, the system
administrator (the super-user) can delegate policy setting and control of a group’s
resource allocation to a subadministrator without granting full super-user privileges. In
turn, these subadministrators may appoint other subadmin-istrators within their own
groups so that resource allocation can be fine-tuned by those closest to work
requirements. Individual subadministrators can only reassign resources up to the limit
of their own group’s allocation. Overall system security and policy still resides with
the super-user, always.

Software Overview 3-63

3

Figure 3-13 A SHARE II Configuration to Enforce Resource Usage Policy

SHARE II
CPU
disk
memory

100 percent
unlimited
100 percent

SHARE II
CPU

memory

15 percent
5GB
33 percent

disk SHARE II
CPU

memory

85 percent
20GB
66 percent

disk

SHARE II
CPU

memory

5 percent
2GB
10 percent

disk SHARE II
CPU

memory

10 percent
group limit
50 percent

disk

SHARE II
CPU

memory

75 percent
group limit
16 percent

disk

SHARE II
CPU

memory

10 percent
group limit
23 percent

disk

3-64 POWER CHALLENGEarray

3

4-65

Application Mapping & Case Studies 4

4.1 POWER CHALLENGEarray: Mapping Applications & Case Studies

Algorithmic Issues

Many applications have been successfully parallelized for POWER
CHALLENGEarray platforms. POWER CHALLENGEarray exploits a comm-
unication hierarchy, with a fast, shared-bus interconnect for intra-POWERnode
communication, a high-bandwidth HiPPI interconnect for inter-POWERnode
communication, and a final TCP/IP network layer for wide-area metacomputing. As
with memory hierarchies, resultant appli-cation performance depends on sustained
bandwidth performance, latency avoidance, latency tolerance, and reduced intertask
communication. By maximizing data locality, processors can frequently exchange data
through the fast layers of the communication hierarchy, avoiding the slower layers.
Remaining communication latency can be tolerated by overlapping useful computation
with data transfer and by moving large volumes of data at high bandwidth.

The combined benefits of shared and distributed memory provided by this architecture
make it a good candidate for a wide range of parallel applica-tions. Parallel tasks
residing within the same POWERnode can communi-cate via shared memory,
exploiting the high bandwidth and low latency of the POWERpath-2 system bus. Such
shared-memory communication can be explicit with direct references to shared-
memory locations, or implicit using industry-standard communication libraries such as
MPI, PVM, or HPF. Parallel tasks residing on distinct POWERnodes can communicate

4-66 POWER CHALLENGEarray

4

via the high-bandwidth HiPPI network. Inter-POWERnode communication can be
implemented using sockets directly or via communication routines provided by MPI,
PVM, or HPF.

Many general-purpose scientific and engineering applications require a moderate
number of processors and are good candidates for running in parallel on a single
POWERnode of POWER CHALLENGEarray. Since a typ-ical customer environment
will consist of several such applications, each with varying resource requirements,
POWER CHALLENGEarray serves as a good throughput engine that maximizes the
throughput for such a set of applications.

However, an interesting set of applications, typically from the grand challenge-class of
problems, can scale to a large number of processors. These applications can span
multiple POWERnodes, and need to be archi-tected to take advantage of the most
general-purpose hybrid communi-cation model. The following list discusses some of
the issues that are important in designing multiple-POWERnode parallel applications
for POWER CHALLENGEarray, with multiple threads or tasks within each
POWERnode. Many existing parallel algorithms will need to be increment-ally
modified to exploit POWER CHALLENGEarray architecture to achieve good
speedups. Several approaches to modify these algorithms are discuss-ed below.
Ultimately, the method of choice for any particular application will depend on the
computation and communication characteristics of the algorithms used.

Task Granularity
The communication-to-computation ratio is one of the most important factors in
determining the performance of a parallel algorithm. Communi-cation is characterized
by the frequency and amount of data communica-ted between the parallel tasks on
distinct POWERnodes. A task’s granular-ity is determined by the amount of
computation it executes between com-munication steps, with a large granularity
referring to large amounts of computation between tasks. Applications that can be
decomposed into tasks with a large granularity are good candidates for the POWER
CHALLENGEarray platform. Often, the frequency of intertask communi-cations in an
algorithm can be reduced by lumping two or more of these exchanges together and
sending a few big messages. This amortizes the communication overhead associated
with data transfer between POWERnodes, thus tolerating a higher network latency.

Application Mapping & Case Studies 4-67

4

Furthermore, the resulting larger messages also make better use of the effective
bandwidth of the underlying communication layer. Figure 4-1 illustrates avoiding
latency through message aggregation.

Figure 4-1 Avoiding Latency Through Message Aggregation

Additionally, the number of inter-POWERnode data exchanges can be re-duced by
creating overlapping buffer zones on each POWERnode and per-forming redundant
computation as an alternative to more frequent message exchange. That is, the problem
is partitioned into overlapping subproblems, so that the work divided among the tasks
is not disjoint— part of the work done on a POWERnode is the same task that other
POWERnodes would have needed to do. This allows a POWERnode to communicate
less frequently with other POWERnodes, at the expense of some extra computation.

Figure 4-2 on page 68 illustrates this with a problem where tasks need to communicate
only boundary region data with their neighboring tasks. There are nine tasks, with the
solid lines showing a disjoint work partition between tasks, the dotted lines showing an
overlapping work partition, and the shaded region showing the overlapping regions for
one of the tasks.

4-68 POWER CHALLENGEarray

4

Figure 4-2 Overlapping Buffer Zones

Many applications that require little intertask communication are ideal candidates to be
solved on POWER CHALLENGEarray. A classic example of such a computation is a
problem that involves many independent simu-lations. POWER CHALLENGEarray
architecture offers several advantages over other architectures, such as a single
CPU/node message-passing mach-ine, even for these problems. These advantages
include better load-balan-cing capabilities, higher I/O performance, and less stringent
memory requirements.

Problem Decomposition
Decomposition of a problem into parallel tasks to be executed on potent-ially distinct
POWERnodes is another key factor in determining its per-formance, and is closely
related to task granularity. Since HiPPI network latency is higher than the memory
latency within a single POWERnode, and the HiPPI network bandwidth is lower than
the intra-POWERnode bandwidth, tasks must reside semipermanently on a
POWERnode. These cannot be assigned to the first node to become available, but they
can only migrate incrementally. This requirement is satisfied by domain decomp-
osition, where the problem domain is divided among the tasks so that each

Application Mapping & Case Studies 4-69

4

POWERnode works on one submatrix, subgrid, cluster of data ele-ments, or subarray.
Domain decomposition typically provides tasks with very large granularity and allows
tasks to have maximum data locality and data reuse.

In applications for which the result at a point is dependent upon data values at
neighboring points, domain decomposition results in the majority of intertask
communications being local to tasks on a POWERnode.

Locality of computation resulting from domain decomposition is necessary to limit the
amount of communication required to support the parallel computation. This locality of
computation also results in better locality of reference to the data, thus using the
memory hierarchy more efficiently.

The low network bandwidth is accommodated because tasks on distinct POWERnodes
only need to exchange data from the boundary regions of the subdomains. The required
bandwidth is therefore reduced by the sur-face-to-volume factor. High network latency
is accommodated by making these exchanges of boundary data infrequent, leading to
large-grain tasks.

Overlapping Communication with Computation
Network latency can also be tolerated by overlapping communication with
computation via asynchronous message-passing. Communication can be overlapped
with computation by sending data from a task to a task on another POWERnode as
soon as the data is ready. While underlying layers handle this data, the sender can
resume its computation. Similarly, if the data that a task needs from another
POWERnode has already been sent and received by the time it needs this data, it does
not have to waste time waiting for this data, and can continue with its computations.
Figure 4-3 on page 70 illustrates overlapping computation with communication.

4-70 POWER CHALLENGEarray

4

Figure 4-3 A Pipelined Algorithm

Intra-POWERnode Tasks
Intra-POWERnode tasks can either use the multiprocessing shared-memory parallel
programming model directives provided by the compilers on the POWERnode
architecture, or be coded as explicit message-passing tasks using either of the two
message-passing libraries provided on POWERnode, MPI or PVM. These libraries
exploit shared-memory primitives for inter-task communication within a POWERnode,
at the same time providing the users with a more flexible programming paradigm.
Alternatively, these applications could use HPF for which the details of intertask
communi-cation are transparent to the application programmer.

Load Balancing
The combination of shared and distributed memory paradigms in POWER
CHALLENGEarray provides maximum flexibility for irregular problems, both in terms
of computational efficiency of the basic algorithm and for load balancing of component
tasks. Load balancing is easier in an architec-ture such as POWER CHALLENGEarray
because the number of nodes on the network is much less (currently a maximum of 16
POWERnodes) than a corresponding distributed-memory machine. Statistically, loads
are more evenly balanced between these POWERnodes. Additionally, the overhead of

Application Mapping & Case Studies 4-71

4

load balancing is amortized much faster in the architecture of POWER
CHALLENGEarray, since this overhead is spread across multiple CPUs (therefore, a
larger computation chunk) of a POWERnode.

Memory Requirements
Memory requirements of an application tend to be lower in POWER
CHALLENGEarray architecture as opposed to a pure distributed-memory machine,
since processor-common data can be shared between the CPUs in a POWERnode.

Input/Output Requirements
Many applications have large I/O requirements, which can be satisfied by the
combination of high performance XFS and NFS, version 3 filesystems provided on
POWER CHALLENGEarray. The XFS file system is the local journaled filesystem on
a POWERnode and can coexist with the EFS file-system. It provides extremely high
I/O performance that scales well on the POWERnode multiprocessor systems. It is
compatible with existing appli-cations and with NFS and can provide throughput in the
range of 150-300MB per second. This, coupled with the augmented NFS Version 3,
(which can provide throughput in the range of 10-15MB per second over the HiPPI
network between POWERnodes), can provide significantly high I/O rates to
applications.

In addition to all the issues discussed above, all single POWERnode optimizations will
be very helpful in general. For example, data locality within a task can be further
improved by rearranging the algorithmic steps such that nearby data elements are
accessed together. Depending on the amount of data needed in a computation step, this
can enable the entire data space needed for a computation step to all fit in the
secondary cache of a POWERnode. Thus each POWERnode will need to reference
main memory only infrequently. Reorganizing the algorithm so that a compu-tation
step uses only stride-one arrays is an example of this technique. For a comprehensive
discussion on single POWERnode and cache-based opti-mizations, please refer to the
POWER CHALLENGE Tech Report.

Suitable Algorithm Characteristics

In addition to embarrassingly parallel algorithms, which require very little intertask
communication, many other kinds of applications can be ported to POWER
CHALLENGEarray platform successfully. In general, a larger amount of

4-72 POWER CHALLENGEarray

4

communication can be tolerated in a hierarchical communica-tion scheme provided by
POWER CHALLENGEarray than a pure distrib-uted memory scheme, since the
number of such distributed nodes is lower and the amount of computation per node is
higher in the array. The algo-rithm characteristics that will facilitate this effort (of
tolerating a higher network latency and a lower network bandwidth for inter-
POWERnode communication) for an application include:

• The ability to divide the problem based on domain decomposition, such that tasks
have maximum data locality and data reuse

• Resulting tasks have large granularity, either because of the decompo-sition method,
or because the number of communications can be re-duced by lumping
communication steps together

• The amount of data exchanged in a communication step is large

• Data exchange is only between boundary regions of subdomains, result-ing in a
surface-to-volume ratio for communication to computation

• Data locality can be improved by rearranging the algorithmic steps

• Communication can be overlapped with computation to some extent

Applications on POWER CHALLENGEarray

Several applications from various fields have been parallelized for POWER
CHALLENGEarray architecture, including those in computational fluid dynamics,
computational structural mechanics, seismic modeling, chem-istry, operations research,
and particle simulation. The following sections describe applications that have been
run on the array from various fields.

PPM Hydrodynamics Code
One of the earliest examples of combining the benefits of shared and dis-tributed
memory schemes offered by POWER CHALLENGEarray is the work performed at the
University of Minnesota to solve a grand challenge problem in computational fluid
dynamics on a cluster of Silicon Graphics CHALLENGE machines in September 1993.
The goal was to perform the largest simulation of compressible fluid turbulence to date
using the Piecewise-Parabolic Method hydrodynamics code. The simulation was per-
formed on a grid of 1,0243 computational zones. The hardware consisted of 16 Silicon
Graphics CHALLENGE XL servers, each with 20 100MHz, R4400 CPUs, 1.75GB
of memory, 12GB of local disk space and 3 FDDI interfaces to a 3-D toroidal network.

Application Mapping & Case Studies 4-73

4

With 1,0243 turbulence simulation and five 32-bit fluid state variables per
computational zone, the memory required to store the primary data was 20GB.
Factoring in local scratch storage and buffers for interprocessor communication, the
amount of memory required for the problem was 28GB.

The problem was decomposed into 16 512 x 512 x 256 grid tasks, one each on the 16
nodes, with each task employing the MIPS compiler multiproc-essing directives within
a node. The nodes were arranged in a 2 x 2 x 4 3D toroidal array, for a total of 20
toroidal rings.

Within a node, the 1.2GB/sec system bus provided a fast interconnection scheme. The
communication bandwidth needed between the nodes was significantly reduced owing
to a surface-to-volume effect; only data along the surfaces of the 3D subdomains
updated by each POWERnode needed to be communicated to other machines.
Additionally, the communication in each of the three coordinate dimensions could
proceed simultaneously. Finally, the problem was structured in such a way that
network commu-nications occurred only thrice in each computation time step, thus
reducing the effects of communication latency.

The entire work space needed for updating a strip of 512 zones in a single 1D sweep
consisted of stride-one arrays, all of which fit into the 1MB sec-ondary cache. Thus
each main system memory was referenced only rarely, and these references were made
to be predominantly stride-one to enhance cache performance. The global shared-
memory of each node was exploited to perform relatively efficient transposes of the
local data, and this allowed each CPU to operate on vectors of 512 or 256 zones.

The data filled 350 4GB Exabyte tapes. Including the 20 percent of the time spent in
network communications, 4.9 GFLOPS sustained perform-ance was achieved. This was
the first time general-purpose computers were used to solve grand challenge-class
problems that were until then software only on special-purpose hardware.

Computational Structural Mechanics (CSM)/Computational Fluid
Dynamics (CFD)
Much progress has been made in the parallelization of application codes in the fields of
Computational Structural Mechanics (CSM) and Computation-al Fluid Dynamics
(CFD). Many top commercial CSM application packages offer parallel solver
technology on the POWER CHALLENGE platform. Similarly, many of the top CFD
application packages are also available in parallel versions for POWER CHALLENGE.
Until recently, most of the parallelization effort has been done using a fine-grain

4-74 POWER CHALLENGEarray

4

parallel approach. Much of the current state of the art concerning parallelization of
these application types in the research community has focused on decompo-sition
across processors in using a coarser grained approach, most often spatial domain
decompositions.

On POWER CHALLENGEarray, the domain decomposition approach is more
appropriate as it usually results in higher computation-to-communi-cation ratios. Fine-
grain parallel approaches, relying only on very low com-munication latency, would be
better suited for running on individual POWERnodes of POWER CHALLENGEarray.
The more subdomains can be made independent of one another in the numerical
technique employed, the greater the expected parallel efficiency will be. Many
commercial CSM and CFD software packages are moving toward this coarser-grained
parallel approach and there are already examples of packages using such tech-niques.
For example, the RAMPANT product from Fluent®, Inc., utilizes a domain
decomposition approach, and high parallel efficiency has been demonstrated across
multiple nodes in POWER CHALLENGEarray. In RAMPANT, decomposition is
performed by the application to maximize load balance across processors and to
minimize communication between processors.

Seismic Modeling
Seismic modeling, preprocessing, and imaging algorithms typically contain parallelism
at a variety of different levels. For example, in elastic modeling, processors on a per-
source location basis or domain decomposition tech-niques allow all processors to
work on the same problem. In preprocessing, processors can be assigned traces,
gathers, records, or other groupings of data depending on the algorithm. In imaging,
processors can be assigned frequency planes, time slices, blocks of image, or various
types of gather.

The vast amount of parallelism available in these algorithms, coupled with the superior
performance of MIPS R8000 on FFT’s, convolutions, and more, clearly indicates that
POWER CHALLENGEarray is the ideal environment for production seismic
processing as well as research. This environment is simple to work in as well as
maintain, since the number of separate systems on the array is quite small. And, for the
very large prestack imaging problems, or large-scale simulations, the full power of the
array is available to simple distributed applications which need only concern
themselves with communication among just a few very powerful nodes. The significant
I/O requirements of such applications can be easily accom-modated with the powerful
combination of the 64-bit XFS filesystem and extended NFS 3.

Application Mapping & Case Studies 4-75

4

In May 1994, Silicon Graphics collaborated with Texaco to solve the world’s largest
3D pre-stack depth migration problem on a 200-processor CHALLENGEarray system
consisting of 10 CHALLENGE XL systems. Each CHALLENGE XL system consisted
of 20 150MHz MIPS R4400 processors and 2GB of main memory. 3D pre-stack
migration provides an accurate and highly resolved 3D image of the earth’s interior
derived from seismic recordings taken at the earth’s surface. Improved imaging allows
geoscien-tists at Texaco to identify smaller exploration targets with greater confi-
dence, while improving the success of oil and gas exploration in difficult-to-find areas.

At Supercomputing ‘94, Silicon Graphics also demonstrated a large 3D poststack
migration problem using the Hale-McClellan 3D poststack depth migration algorithm
on POWER CHALLENGEarray. 3D poststack depth migration is used to analyze
seismic data that is acquired on the earth's surface above an exploration target in order
to improve the economics of oil and gas exploration and production.

The Hale-McClellan algorithm is the most popular algorithm for 3D post-stack depth
migration because of its ability to accurately handle rapid lat-eral velocity changes.
The initial data on the surface is extrapolated down-ward in depth using a one-way
scalar wave equation, and imaged at each depth level corresponding to its energy at
zero time. Hale-McClellan extra-polation is the recursive application of a 2D
convolutional operator to the complex wave field followed by an interpolation using
tabled coefficients dependent on the velocity model. This is applied independently to
each temporal frequency. The imaging step is the summation of the real com-ponent of
this field over all frequencies.

Each POWERnode of POWER CHALLENGEarray was assigned a group of
frequencies, and migrated these frequencies in parallel. The algorithm used
asynchronous disk I/O and asynchronous network communication between
POWERnodes to completely hide the communication behind the computation.
Network communication was performed using a simple socket-based message-passing
library. As the migration proceeded and imaged new depth levels, the results were
updated and viewed with an interactive volume renderer running on POWER Onyx.
The migration was applied to a spatial volume of size 256 X 256 X 256. The relatively
small spatial dimensions were chosen to demonstrate the ability to interactively
interrogate the migration output, although the performance scales linearly for larger
data sets. Furthermore, a very large number of frequencies (420) were chosen so that
the total problem size was reasonably large; a single processor required 31,011 seconds
to complete the job.

4-76 POWER CHALLENGEarray

4

The POWER CHALLENGEarray system consisted of 11 POWERnodes, each with
1GB or 2GB of memory, up to 16GB of disk, and eight to 16 MIPS R8000/75Mhz
processors, all connected through a HiPPI switch. The application was run on 84
processors and a speedup of 82.6 was observed, resulting in a sustained performance of
more than 12.6 GFLOPS. The same problem when run on 60 MIPS R8000/75Mhz
processors across eight POWERnodes realized a speedup of 58.9, resulting in 9
GFLOPS of sustained performance.

Operations Research
Many classes of operations research problems, such as the Traveling Sales-man
Problem (TSP), have long captured the imagination of researchers in integer
programming and discrete optimizations. It is easy to describe, yet exceedingly
difficult to solve. Computational progress on the TSP has been responsible for much of
the progress in the solution of general Mixed-Integer Programming (MIP), of which
TSP is an example. Applications for this more general MIP model are unlimited,
ranging from high-level capital budgeting through production planning and control to
the design of computer chip layouts.

Mixed Integer Programming (MIP) problems are ideal candidates for POWER
CHALLENGEarray. The main computation in MIP is typically ex-tremely coarse-
grained, so the cost of exchanging data between nodes is minimal. At the same time, an
effective MIP code requires some policy decisions, such as decisions about how to
search a tree, to be made in a centralized fashion. The POWER CHALLENGEarray
allows the distribution of the fine grained communication associated with these policy
decisions thereby reducing the costs of centralized control.

In May 1994, Silicon Graphics collaborated with the Center for Research in Parallel
Computing (CRPC) at Rice University, Rutgers University, Bellcore, and Bell
Labs—known collectively as RCRBB—to solve the world’s largest Traveling Salesman
Problem ever (7,397 cities), on a CHALLENGEarray system consisting of 10
CHALLENGE XL systems. Each system consisted of 20 150MHz MIPS R4400
processors and 2GB of RAM. This is the most difficult discrete optimization problem
ever solved.

Application Mapping & Case Studies 4-77

4

Particle Simulation
PSiCM is a 3D Direct Simulation Monte Carlo (DSMC) code originally written in CM
FORTRAN at NASA Ames Research Center, and has been converted to High-
Performance FORTRAN and compiled using the pghpf HPF compiler from PGI. This
HPF version of PSiCM has been successfully demonstrated on POWER
CHALLENGEarray.

PSiCM presents several challenges to both a compiler and the underlying parallel
hardware. It requires efficient integer sorting, permutation of sev-eral large 1K vectors
using indirect array accesses, general data scatter oper-ations, segmented scan
reduction operations on 1D vectors, and parallel random number generation. HPF
supports many of these operations in the form of HPF library routines. Operations such
as the permutations can be supported directly in the compiler given the capability for
efficient parallel indirect array accesses.

PSiCM is used to simulate the flow of molecular nitrogen from a nozzle. Particle
simulations are of great interest to space station designers, and can be used to analyze
the effects on solar panels of plumes emitted from maneuvering jets during space
shuttle docking. Complete simulations involving millions of particles typically require
many hours of computation.

4-78 POWER CHALLENGEarray

4

5-79

High-Throughput Environment 5

5.1 Introduction

Engineers and managers often base their selection of large, high-perform-ance
computing systems on the performance of a few jobs. Many factors contribute to the
proper configuration. Among these are:

❑ Performance of key large applications

❑ Basic system capacities:

° Memory

° I/O capacity

° Disk space

❑ User productivity features

❑ Average batch system job turnaround time

❑ Interactive workload capacities

The first three factors are typical measurements for success. Compared with the first
three elements, how to properly configure for job throughput and interactive workloads
are often much less systematically addressed. These five areas often compete for the
same budget resources and lead to differ-ent configuration needs. The relative
importance of these categories will also vary from computer site to computer site. Here
we explore some of these issues and how they relate to the large computer site with
many applications, many users, and expensive, heavily-used systems.

5-80 POWER CHALLENGEarray

5

Historically, and under controlled conditions, system-wide measurements of
throughput have been difficult to obtain. It is often too expensive to dedicate large
compute resources for an extended time to perform such an evaluation. Similarly,
porting and tuning a large number of codes from scratch is labor-intensive and
expensive. Understanding the costs and ben-efits of moving applications from one
computer to another will be helpful in guiding the procurement process.

Below are the results of a real-world porting and tuning exercise involving a large
number of codes to be installed at multiple large-scale compute facilities in North
America. These results indicate several unique advan-tages of the POWER
CHALLENGEarray in large sites. In addition, exam-ining throughput as a function of
architecture reveals powerful economic advantages to using shared-memory building
blocks (POWERnodes) in the high-throughput environment, as well as identifying
practical recipes to optimally configure a system.

The Benchmark Suite
This paper is based on runs performed on a POWER CHALLENGEarray system.
Executions were performed to obtain single-job timing as well as large throughput time
mixes. All test cases reflect real-world scenarios typical of job mixes found at existing
sites.

The benchmark suite consisted of 28 different codes and/or data sets. Run mixes were
generated from this list by choosing subsets of bench-marks and an iteration count for
each. Timing exercises were included in the compilers. The benchmarks are described
in Table 5-1 on page 81. As can be seen, the applications range across a wide span of
scientific and engineering disciplines.

Virtually all benchmarks were developed for the Cray C-90 architecture. Some
benchmarks included PVM versions of the application as an alter-native starting point.
Altogether, the codes consist of about 800,000 lines of source code. The bulk of the
applications are in Fortran 77, with a small amount of C code. Each code is
substantially different from the others in CPU requirements, memory, and I/O
requirements.

High-Throughput Environment 5-81

5

ID Type Memory(MB) PVM

B-1 CEM 11 NO

B-2 CEM 12 NO

B-3 CEM 538 NO

B-4 CFD 620 YES

B-5 CFD 64 NO

B-6 CFD 551 NO

B-7 CFD 222 YES

B-8 CFD 482 NO

B-9 CFD 4000 NO

B-10 Chemistry 17 NO

B-11 Chemistry 8 NO

B-12 Chemistry 8 NO

B-13 Chemistry 48 NO

B-14 Chemistry 8 NO

B-15 Chemistry 88 NO

B-16 CFD 2000 YES

B-17 Image Processing 19 NO

B-18 Image Processing 19 NO

B-19 Image Processing 39 NO

B-20 Miscellaneous 8 NO

B-21 Reservoir Modelling 4 NO

B-22 Signal Processing 412 NO

B-23 Structural Explicit FEA 36 NO

B-24 Structural Explicit FEA 1400 NO

B-25 Structural Explicit FEA 83 NO

B-26 Structural Explicit FEA 70 NO

B-27 Structural Implicit FEA 391 NO

B-28 Structural Implicit FEA 168 NO

Table 5-1 Benchmark Codes/Datasets

5-82 POWER CHALLENGEarray

5

The benchmarking process was completed in three stages. The first stage was a simple
porting of all applications to get to a simple level of correct-ness. This effort focused
on obtaining single-job timings on a single MIPS R8000/90MHz processor. For some
codes this was not practical because these codes were written using PVM and had to be
run in parallel. In these cases, single job timing was obtained by using four or eight
CPUs.

The second stage was to tune the individual benchmarks for performance. The general
performance goal was to maximize throughput in processor-sec for each benchmark. In
general, the benchmarks were not parallelized deliberately, since parallelization would
be detrimental to throughput, based on Amdahl’s Law. Nevertheless, some benchmarks
were parallelized to meet minimum execution time targets.

In the third stage, the codes were combined into essentially arbitrary mixes. These
were executed on various-sized POWER CHALLENGEarray systems to determine the
array throughput. Each throughput test was constructed by executing a subset of
benchmarks picked from the list of real world codes. Each test executed a specific
number of copies of each code selected. Vendors were free to schedule the job mixes in
any order desired.

Porting Team

The porting team was a pool of 10 programmers, with five active members at any given
time. The group, most of whom were outside contractors, had limited Silicon Graphics
and POWER CHALLENGEarray or POWER CHALLENGE experience. Only four had
previous POWER CHALLENGE experience at all. Of these four, only two were
available for the full term of the effort. In general, the porting team had a strong
scientific and high-performance computing background. The team was typical of an in-
house team organized for porting production codes to a new platform.

The team went from novices of Silicon Graphics compiler and operating systems
technology to mature users. This knowledge transfer also included extensive work with
various scientific libraries. In particular, they devel-oped extensive expertise in MPI
and PVM message-passing applications.

High-Throughput Environment 5-83

5

System Configurations

The test array was a POWER CHALLENGEarray system configured with eight
POWERnodes. Each was configured with 8GB of system memory, between 12 and 16
MIPS R8000/90MHz CPUs, and 64GB of user disk space. In general, enough memory
was chosen for the job mix to avoid paging.

The I/O subsystem was a moderate configuration on each POWERnode, consisting of
sixteen SCSI disks of 4.3GB capacity stripped 16 ways. The filesystem gave a
sustained I/O transfer rate of more than 50MB/sec on single file I/O transactions using
standard FORTRAN binary I/O.

Systems were interconnected via Ethernet and HiPPI interfaces. The HiPPI connection
sustained raw I/O point-to-point performance in excess of 89 MB/sec. FTP transfers
over TCP/IP were approximately 40MB/sec. Substan-tial network transactions were
not a part of the test suite.

The Porting Experience

On average, approximately two days were required to port a code. This was followed
by tuning that required an average of one week per code. Some codes required as many
as three weeks. Some required no changes at all. Many of these changes resulted in
several-fold speedups over unoptimized timings. Tuning efforts were cut short due to
time restrictions. It is clear that there is still significant room for further benchmark
performance improvement.

Since all code work had to be completed within two months, codes were selected for
optimization based on their total expected load on the system. Thus, codes that
consumed large CPU and memory resources were exam-ined closely. Codes that
required few system resources were simply ported with no optimization effort.

Factors which entered into the allocation of tuning resources were based on overall
weight of the benchmark in the expected mixes, the number of lines of code, and the
perceived ease or difficulty of tuning. This approach is typical of porting efforts that
might be done at a large, heavily loaded compute center. Time can be short, and key
applications will get dispro-portionately large tuning resources based on various
criteria.

5-84 POWER CHALLENGEarray

5

Since the emphasis was on throughput, efforts at parallelization to reduce any
individual job’s execution time were generally not warranted. Parallel executions often
suffer some inefficiencies in execution due to scalar sec-tions and parallel overhead
and, as mentioned previously, leave through-put performance unchanged or even
degraded. Parallelization was only performed to (a) get job run times below critical
values and (b) actually improve code throughput performance because parallelizing led
to a super-linear speedup (that is, two processors ran more than twice as fast due to
better cache locality of reference).

Initially, optimized codes were compiled and executed one at a time. Wall clock
timings for the compile and execution phases were obtained. Because of the trivial ease
of using parallel make, the compile stages were often broadcast across more than one
CPU to reduce the elapsed time. The maxi-mum number of CPUs was set to 8. This
was normally reserved for the benchmarks with very large source trees. Most codes
were compiled on one to four CPUs. No special coding was required to take advantage
of this technique. The standard makefiles used under a normal UNIX make were
executed under Silicon Graphics smake utility with no changes.

Early results of the study showed that POWER CHALLENGE is an excellent compile
engine.The largest code of 250,000 lines of source compiled in just 383 seconds of
elapsed wall clock time on eight CPUs. The same code compiled in just 259 seconds
on 16 CPUs. This compile invoked all of the optimization flags available on the
system, and was reflective of how a user would use the system in a real-world
environment.

Single-Job Test Results

A summary of these first two stages appear in Table 5-2 on page 85. The third and
fourth column are the initial execution times and the final opti-mized execution times,
respectively; the fifth column shows the number of CPUs required for the optimized
application; Cray C-90 single-CPU execu-tion times are presented in the sixth column;
the last column provides the relative performance of the MIPS R8000/90MHz to the C-
90 on a processor to processor basis. This C-90 equivalent performance is defined as:

C-90 Equivalents =
Optimized Time • CPU per job

C-90 Time

High-Throughput Environment 5-85

5

The tuning efforts of Silicon Graphics resulted in significant speedups. Typically, the
team focuses on taking multiple three-dimensional DO loops in critical routines and
combining them to form a single, larger 3D loop. This philosophy led to most
improvements, including speedups ranging from 2-10x. Further improvement is
possible.

Id Type
Original

Time
Tuned
Time CPUs

C-90
Time C-90 Equivalents

B-1 CEM 103319 10217 1 3526 0.35

B-2 CEM 450 404 1 494 1.22

B-3 CEM 1690 877 1 536 0.61

B-4 CFD 8213 803 8 866 0.13

B-5 CFD 397 346 4 539 0.39

B-6 CFD 16866 3764 1 822 0.22

B-7 CFD 99098 6029 16 6333 0.07

B-8 CFD 32777 7157 1 1697 0.24

B-9 CFD 26851 515 1 1107 2.15

B-10 Chemistry 29898 352 2 195 0.28

B-11 Chemistry 20410 3963 1 7504 1.89

B-12 Chemistry 2516 542 1 420 0.78

B-13 Chemistry 17659 3699 1 5044 1.36

B-14 Chemistry 689 791 1 863 1.09

B-15 Chemistry 692 170 1 193 1.14

B-16 CFD 5952 1711 8 4619 0.34

B-17 Image Processing 271 52 1 40 0.76

B-18 Image Processing 4894 1998 1 501 0.25

B-19 Image Processing 293 135 1 192 1.43

B-20 Miscellaneous 35813 35813 12 1922 0.00

B-21 Reservoir Modelling 442 328 1 859 2.62

B-22 Signal Processing 15937 6523 1 805 0.12

B-23 Structural Explicit FEA 1164 326 1 430 1.32

Table 5-2 Single Job Test Results

5-86 POWER CHALLENGEarray

5

Figure 5-1 on page 87 shows a histogram of the relative performance of the MIPS
R8000 system with respect to a single processor C-90. In summary, POWERnode with
the 90 MHz R8000 processor is a tremendous performer relative to the Cray C-90
CPU. Most codes execute at a significant fraction of the C-90 performance on a CPU
to CPU basis. Several even exceed C-90 performance numbers.

Figure 5-1 also shows that the R8000 exceeds the performance of the C-90 for about
30 percent of the benchmarks. This is due to a substantial scalar fraction in some codes
coupled with cache reuse on the R8000 processor. This behavior is common with many
high-performance scientific appli-cations. The high levels of sustained performance in
so many of these cases is clear evidence of the excellent architectural design of the
POWERnode system. In particular, the compiler’s ability to effectively exploit the
super-scalar features of the R8000 processor contributed strongly to the high
POWERnode performance relative to the C-90.

B-24 Structural Explicit FEA 19196 3068 1 939 0.31

B-25 Structural Explicit FEA 15236 8597 1 3504 0.41

B-26 Structural Explicit FEA 3638 3257 1 780 0.24

B-27 Structural Explicit FEA 27044 2248 1 1604 0.71

B-28 Structural Explicit FEA 11030 5708 1 3011 0.53

Id Type
Original

Time
Tuned
Time CPUs

C-90
Time C-90 Equivalents

Table 5-2 Single Job Test Results

High-Throughput Environment 5-87

5

Figure 5-1 Relative Performance: C-90: MIPS R8000

In single-job performance, this histogram shows the excellent performance of a
POWERnode over a broad application range. Even more, it offers excellent
price/performance value. The average performance for this set of benchmarks shows
the R8000/90MHz processor to be 70 percent of the C-90 on a single CPU to single
CPU basis. Factor in the 20x price differential between the CPUs and the
price/performance value is compelling.

5-88 POWER CHALLENGEarray

5

Throughput Test Results

The team completed 24 throughput tests. These test cases were each comprised of an
almost random selection of benchmarks from the list above, coupled to an almost
random number of iterations of each.

The order of execution of the jobs was scheduled to maximize the total system
throughput. This was accomplished by employing a job scheduler that used the single-
job runtimes coupled with knowledge of disk and memory utilization of each job to
most efficiently launch them into the system. This system worked well and total CPU
use was more than 95 percent for all mixes tested. An example of how system
resources are loaded for a typical run is shown in Figure 5-2 on page 90. These results
were generated with the Performance Co-Pilot (PCP) profiling tool. Since the goal of
the exercise was to provide maximum throughput for mini-mum budget, many key
system resources were heavily loaded: processors, memory, and disk.

Table 5-3 on page 91 summarizes the results of the throughput tests. The first column
contains the actual elapsed wall clock seconds for each mix. The second column
contains the predicted elapsed wall clock time as de-termined by the scheduler. The
scheduler included no model for multiple job overhead and memory contention on the
system memory bus. The third column shows the efficiency obtained for real runs
compared to the predicted times. A histogram of relative efficiency is shown in
Figure 5-3 on page 92 for both the 12 processor runs and the 16 processor runs. The
results show that the overall interference overhead for all cases is quite small. Worst
case numbers are only a few percent from perfect.

Real-world throughput mixes are typically made up from many diverse codes. The test
cases under consideration are a reflection of such an envir-onment. Based on actual run
results we can say that such mixes will exe-cute extremely well on POWER
CHALLENGEarray.

In summary, Figure 5-1 on page 87 shows dramatic proof that POWER CHALLENGE
is a powerful performer in a heavily-loaded throughput environment. Aside from the
extensive memory and CPU requirements, the codes executed also typically exhibit
large I/O requirements as well. Many of the codes require multiple reads and writes to
files in excess of 200MB. Some codes wrote files larger than 2GB. Some wrote files
repeat-edly for total I/O counts in excess of 6GB.

Finally, Figure 5-2 on page 90 shows the excellent balanced architecture of POWER
CHALLENGE in the throughput environment. Under heavy loads with all the
processors very busy, the memory subsystem capacity is well matched to the memory

High-Throughput Environment 5-89

5

demands of multiple simultaneous jobs. In no case did the overall performance of the
system degrade by more than seven percent over the timing that would have been
obtained on an ideal system with no code interference, despite tremendous activity on
the system bus. In general, the measured result is within 2 percent of the predicted
times. This is within the noise of the measurements as the actual run times of any code
can vary on the order of 2 percent from run to run.

5-90 POWER CHALLENGEarray

5

Figure 5-2 Loading System Resources: A Typical Run

High-Throughput Environment 5-91

5

Actual Predicted Efficiency CPU Count Memory (GB)

14014 14023 1.00 12 4

18429 18145 0.98 12 4

15893 16086 1.01 12 4

18243 18337 1.01 12 4

15633 15671 1.00 12 4

13915 13873 1.00 12 4

11325 11329 1.00 12 4

16309 16156 0.99 12 4

16855 16786 1.00 12 4

17979 17919 1.00 12 4

18558 18375 0.99 12 4

13674 13665 1.00 16 4

15083 15094 1.00 16 4

14299 13755 0.96 16 4

18824 18521 0.98 16 4

21831 21536 0.99 16 4

17496 17564 1.00 16 4

16920 16897 1.00 16 4

14485 14303 0.99 16 4

11258 10787 0.96 16 4

13079 12203 0.93 16 8

11104 10734 0.97 16 8

13777 12960 0.94 16 4

10783 10436 0.97 16 4

Table 5-3 Predicted and Measured Job-Mix Times

5-92 POWER CHALLENGEarray

5

Figure 5-3 Histogram of Multi-Job Efficiency

High-Throughput Environment 5-93

5

Leveraging Resources: POWER CHALLENGEarray

For large sites, POWER CHALLENGEarray offers an attractive alternative to the
established mainframe. With respect to the individual, the system offers the excellent
single CPU floating-point performance of POWER CHALLENGE, only now the total
number of CPUs can grow to 288 per system (8 POWERnodes with 36 R10000 CPUs
per POWERnode).The system continues to support multiple CPU parallelism via
automatic com-pilation and/or PVM/MPI.

Other supercomputer features are supported as well. Some very important features
include:

❑ A flat 64-bit address space—allowing single jobs to directly access all 16GB of
memory in a single node

❑ Transparent large-file support for single files larger than 2GB is standard

The Silicon Graphics high-performance product line also provides high-performance
I/O features, including HIPPI (sustained point-to-point file transfers over TCP/IP in
excess of 90MB/sec).

For system administrators needing to oversee the throughput needs of an entire
department, POWER CHALLENGE and POWER CHALLENGEarray products are a
perfect match. Large numbers of CPUs attached to large globally-addressable
memories ensure the best possible use of each CPU in a heavy throughput
environment. The single-system image with single points of control also dramatically
reduces the burden to management. This means that the system administrator has a
much better chance of using all of his memory and all of his CPUs for his workload,
thus better serving the user community.

Simple-minded, distributed-memory, “shared nothing” traditional message-passing
cluster systems insure that CPU and memory resources cannot possibly be used
efficiently. Jobs cannot be migrated in such a system in any practical sense. The result
is a severe under-use of expensive system resources for an average site.

5-94 POWER CHALLENGEarray

5

Throughput Economics

We consider here the relative economic value of shared-memory versus dis-tributed-
memory. Typically, the high-throughput environment will have a significant batch
workload. It also has a wide variety of jobs which need to be run and which stress
different aspects of system capabilities:

• Compute performance

• Memory capacity

• Disk performance

• Disk capacity

• Network performance.

We consider here the economics of throughput based on memory and processor
configuration for the shared memory environment (SMP), the POWER
CHALLENGEarray environment, and the usual distributed mem-ory environment
(MPP). In the batch environment, jobs are not scheduled until resources are available:
processors, memory, disk space, licenses, and more. In the distributed environment,
there is an additional constraint: for MPP, memory for a job must be local to the
processor used for that job thread. It is intuitively clear that this additional constraint
will lead to less efficient use of memory than for SMP. It is also clear that the
economics for POWER CHALLENGEarray will fall between the SMP and the MPP
extremes. We explore these economics below.

Consider MPP first. Any computer site can characterize its workload accor-ding to a
mix of jobs, each jobi having requirements for a number of proc-essorsPi and some
amount of memorymi. Each job also requires a certain amount of timeti to run, and is
run with a relative frequencyfi to the other jobs that are in the mix. To be able to run
any job in the job mix requires that the system have the minimum capacities for that
job. In particular, the critical resource will often be memory per processor. Many jobs
are not performance sensitive, but nevertheless require a large memory reserve to run.
These jobs will run on very few processors (typically one), and a small number of
processors required for the job will tend to create large memory per processor
requirements. To run the job at all requires some number of processors to be
configured with the largest memory per processor that any job in the job mix might
require. It is desirable in an MPP machine to have balanced memory. This gives the
possibility of running jobs across the whole machine which can use the whole memory.
We have made this additional assumption in looking at throughput economics. While

High-Throughput Environment 5-95

5

this assumption can be relaxed, it is not without penalty. Uneven amounts of memory
per processor will lead to greater scheduling difficulties and will reduce the effective
memory available for large multiprocessor runs. Simi-larly, the flexibility to grow
workload to include jobs with large memory per processor requirements will be
reduced. Assuming balanced memory, the memory required for the whole system is
simply:

m p

where M is the memory of the computer system, is the number of proc-essors in the
system, and m p is the largest value of memory per processor required by any job.

We now consider the SMP case. Here, memory is a shared resource and assuming that
the largest memory requirement is met, system memory requirements are something
like:

m p

where 〈m p〉 is the expectation value of memory per processor required for any job.
The expectation value for any variable x is:

We also define according to the usual convention for future reference.

We examine this intuition in more detail. The problem of scheduling work in a real
heavily-loaded batch environment is somewhat different than the previous method of
throughput scheduling. In the typical environment, it is difficult to know a priori what
the real values of memory, processors, and execution time that any one job will require.
Also, scheduling is not gen-erally a function of optimizing the order of execution of
jobs to maximize throughput. While there is rescheduling, it is generally due to site
policies and not directly to throughput optimization. To give some idea of what the raw
throughput capacity of a system will be, we propose a simple model of throughput
which is close to a typical sites use of throughput. We assume for a given configuration
of memory and processors, that the next job is only allowed to execute when enough

Μ = ∑
∑

χi fi ti
fi ti

σx x x〈 〉–()2〈 〉=

5-96 POWER CHALLENGEarray

5

processors and memory are available to run the job. We assume that there is always a
job waiting to be executed, and that the jobs are randomly distributed according to the
various frequenciesfi.

There are a number of ways to measure throughput, and we choose processor-sec
equivalents. In general, determining a closed form for throughput is difficult, so we
turn to modelling the throughput via a Monte Carlo simulation over a long and fixed
time interval. The results of such a run based on a job mix typical of the previous
sessions and with varying processors and memory for an ideal SMP machine is shown
in Figure 5-4 on page 97 as a greyscale plot. Lighter values of gray indicate larger
throughputs. Hyperbolic contours represent lines of constant throughput. The solid
sloped line is the line of constant system cost assuming a fixed ratio between the cost
of processors and the cost of memory. In this case, we used current processor and
memory costs for POWER CHALLENGE. To buy the most throughput for a certain
budget, simply search along the line until the line is tangent to an isobar of throughput.
The locus of such points for different budgets, assuming constant ratios of processor
cost to memory cost, is shown as the upper dashed line. The lower dashed line shows
the appropriate choice of proc-essors to memory based on the constraints of the job
which requires the largest amount of memory per processor under the principle of
balance.

High-Throughput Environment 5-97

5

Figure 5-4 Plot of a Typical Job Mix for an Ideal SMP Machine

To understand throughput capacity for POWER CHALLENGEarray, we ex-tend the
principle of balance that we have for MPP. The number of proc-essors per
POWERnode are equal across the array and less than or equal to 18 processors per
POWERnode. Memory per POWERnode is divided evenly. We measure performance
with a similar Monte Carlo simulation. For job mixes similar to the mix used in
Figure 5-4 and under the same costing assumptions, the locus of best processor-
memory points is plotted in Figure 5-5 on page 98 for both POWER
CHALLENGEarray and MPP.

5-98 POWER CHALLENGEarray

5

Figure 5-5 Locus of Optimal Processor-Memory Combinations

High-Throughput Environment 5-99

5

The team ran many experiments with varying job mixes and varying ratios of processor
to memory cost. From these experiments, Silicon Graphics found an empirical
approximation for finding the optimal ratio of memory to processors for a given budget
B($K), a given cost of memory Cm ($K/GB), and a given cost of processors Cp
($K/processor).

The average error for the fit is about eight percent.

It is interesting to compare the relative throughput obtained for a partic-ular budget
between MPP-style architecture and POWER CHALLENGEarray architecture. The
results of such a comparison are shown in Figure 5-6 on page 100. In this figure, we
have also looked at the case where the job re-quiring the largest memory/processor
ratio was dropped from the mix. For constant budgets, shared memory provides factors
of two or more in throughput capacity.

The performance of POWER CHALLENGEarray versus MPP is shown in Figure 5-7
on page 102 for the same conditions as Figure 5-6. You see that generally, coarse-
grained distributed memory combined with SMP nodes leads to efficient use of
memory, compared to the ideal case of pure SMP.

M
P

η m〈 〉 1
2

Cp

Cm
-------ησmσp+

η p〈 〉 1
2

Cm

Cp
-------ησmσp+

--=

η 0.0438
Bσm p⁄

Cp p〈 〉 Cm m〈 〉+
-- 1 0.9992

B
–()⋅ ⋅=

5-100 POWER CHALLENGEarray

5

Figure 5-6 Throughput Comparison: MPP and POWER CHALLENGEarray

High-Throughput Environment 5-101

5

There are several intangible benefits of shared memory and the coarse-grained memory
distribution of POWER CHALLENGEarray. It is important to not only have the
minimum system capacities, but also the flexibility to handle unforeseen demands on
memory capacity and memory per processor. The fundamental shared-resource
approach underlying SMP and the semi-shared approach implemented in POWER
CHALLENGEarray will both have excellent flexibility to handle larger memory
demands up to the fundamental available memory. While it is possible to enhance
through-put value for MPP with unbalanced memory mapping, total throughput value
will not approach the SMP case, and, inevitably, compromises in flexibility will ensue.
Net memory for jobs which run across the system will fall. The capacity to increase
memory/processor will also be severely restricted. All follow from the fact that on an
MPP machine, memory is additionally constrained to be local to the processor that is
using that memory.

5-102 POWER CHALLENGEarray

5

Figure 5-7 Throughput Comparison: SMP/POWER CHALLENGEarray

In the heavy throughput environment, POWER CHALLENGEarray offers powerful
memory economies. The cost of memory for traditional high-end vector processors
practically limits vector machines to small memory cap-acity per processor flop.
Commodity pricing levels of POWER CHALLENGE memory allow large memory

High-Throughput Environment 5-103

5

configurations for both raw memory capac-ity, and allow processors to run job mixes
with much greater processor utilization. MPP machines, in turn, require far larger
memory configura-tions to achieve similar throughput capabilities.

Summary

This study shows that POWER CHALLENGEarray is well-suited to provide high-
performance compute capacity for your heavily-loaded computer center. These key
features include:

❑ Excellent individual processor performance across a wide range of scientific
applications

❑ Low programmer investment to port existing applications with excellent performance

❑ Balanced architecture to handle heavy concurrent job execution with excellent
efficiency

❑ Large and inexpensive memory capacity

❑ Best-in-class throughput value

In the heavy throughput environment, memory is an often overlooked and
underconfigured component of throughput capacity. With care, it is possible to
maximize the total throughput capacity by matching memory and processors for the
site’s real workload. Buying the most throughput capacity for available budget dollars
will decrease average user turnaround time, an important business objective. It is also
clear that the large and affordable memory capacity of POWER CHALLENGEarray
will enable larger detailed scientific and engineering numerical models, which in turn
will increase your overall enterprise competitiveness and productivity.

5-104 POWER CHALLENGEarray

5

6-105

The POWERWALL Project 6

6.1 The POWERWALL Project

Background and Motivation

The original motivation for building a high-performance scientific visual-ization wall
was to build a visualization and display system capable of coping with the high-
resolution images and the high-bandwidth require-ments of supercomputing
applications and to do this in a large format so that a group of researchers could
display their data interactively and dis-cuss it together on a “digital” chalkboard. In
this case, the chalkboard be-comes an ultra-high-resolution full-color window, also
known as POWERWALL, on the virtual world of their supercomputing applications.

POWERWALL—Enabling the Power Workplace
The primary purpose of POWERWALL is to visualize and display very high-resolution
data from large scientific simulations performed on super-computers or from high-
resolution imaging applications. In addition to this high resolution, POWERWALL
provides a large 6-foot-by-8-foot display area to facilitate collaborations of small
researcher groups using the same data. All collaborators can see the display clearly and
without obstruction, and the rear-projection technology makes it possible to walk up to
the dis-play and point to features, just as one would while discussing work at a
chalkboard. Thus POWERWALL could be a model for the digital movie theater of the
future, since its display of 3200 X 2400 pixels has nearly the resolution of 35mm
movie film. The POWERWALL has been used to anim-ate images drawn by

6-106 POWER CHALLENGEarray

6

computers. These images represent the results of supercomputer simulations of the
behavior of gases under exotic con-ditions. Because these conditions prove difficult to
achieve in the labor-atory, computers are used to simulate these environments instead.

An example of such an exotic fluid flow, simulated on a supercomputer and displayed
on POWERWALL, is propagation of a gaseous jet at Mach 4 through an ambient gas
10 times denser. This simulation helps astron-omers to understand powerful jets that
are observed shooting out of the nuclei of certain active galaxies. The same simulation
is also helpful in understanding how jet aircraft engines generate noise at the airport. In
either case, gas flow is subdivided into millions of tiny cells in which the behavior of
the gas is treated in a simplified fashion. To see the results of such a calculation in their
full complexity, a POWERWALL display is required, with its nearly 8 million pixel
resolution.

POWERWALL can also be used as a virtual reality (VR) system by utilizing
specialized software for navigating through data sets. These data sets could come from
computer simulations or, for example, satellite observations of terrain and data
archives, such as meteorological or geological archives. These data sets can be
accessed by applications running on the Silicon Graphics POWER CHALLENGEarray
system that drive POWERWALL. As the user explores the data sets, POWERWALL
also becomes a window onto the virtual world of the simulation.

The University of Minnesota in collaboration with Silicon Graphics, Ciprico, Inc., and
IBM Storage Products Division, successfully constructed and demonstrated the very
first POWERWALL. On display in Silicon Graphics Booth #401 at Supercomputing
'94, this system consisted of two POWER Onyx supercomputers, each equipped with
eight MIPS R8000 processors, 2GB main memory, 15 Fast/Wide SCSI-2 I/O channels,
two HiPPI channels, 12 Ciprico disk arrays (192GB total per system), 2
RealityEngine2 graphics engines, and two Electrohome Marquee 8000 projection
screen displays.

The Supercomputing ’94 POWERWALL was used to interactively explore a data set
taken from the largest simulation to date of homogeneous, compressible turbulence, a
simulation carried out a year ago by the University of Minnesota team using a Silicon
Graphics 320 CPU CHALLENGEarray XL system.

Raw data representing the velocity field in the simulation was rendered into images
with a POWER CHALLENGEarray system and displayed interactively on
POWERWALL. This turbulence simulation produced a data set of half a terabyte. The
POWERWALL enables scientists to put entire data sets of this size on line for fully

The POWERWALL Project 6-107

6

interactive exploration. The ultimate intended result is scientific insight, which alone
can be obtained by viewing all the data interactively from any angle using any desired
method of visualization.

The Technology

Display Hardware
POWERWALL’s display is a single 6-foot-by-8-foot screen illuminated from the rear
by a 2-by-2 matrix of Electrohome video projectors. These projectors are driven by
four RealityEngine2 graphics engines. Each projector provides a resolution of 1600 x
1200 pixels (about 2 megapixels), making the entire POWERWALL resolution 3200 x
2400 pixels (~8 megapixels). Ciprico disk arrays supplied the RealityEngine2 graphic
engines with more than 300MB per second of data to display smooth-motion animation
across the entire viewing area. POWERWALL does not consist solely of a high-
resolution display system; it is in itself a super-computing system. In the configuration
setup at Supercomputing ‘94 (see Figure 6-1 on page 108), POWERWALL was an
integrated visualization system connected by a HiPPI network to a POWER
CHALLENGEarray distributed parallel processing system, which included large and
extremely fast disk storage systems for raw or image data and more than 100 MIPS
R8000 processors.

POWERWALL Software
POWERWALL software was developed over a course of six years by a team of people
at the University of Minnesota’s Graphics and Visualization Laboratory (GVL) at the
Army High-Performance Computing Research Center (AHPCRC) under the direction
and supervision of Paul Woodward and Tom Ruwart. Based on graphics and
visualization tools, the software is responsible for synchronization and control of
processing, movement, and display of data on POWERWALL.

6-108 POWER CHALLENGEarray

6

Figure 6-1 Supercomputing ‘94 POWERWALL Equipment Configuration

The POWERWALL Project 6-109

6

The POWERWALL Team

The University of Minnesota team is headed by Dr. Paul Woodward, a professor of
astronomy at the University of Minnesota. Dr. Woodward is also a Fellow of the
Minnesota Supercomputer Institute. He has been invol-ved in scientific visualization of
fluid flows, and in high-speed computer animation of images from supercomputer
simulations since 1986. Fluid flow simulations that his group performed on
supercomputers built by Cray Research, Thinking Machines, and Silicon Graphics
were carried out using the Piecewise-Parabolic Method (PPM), which he developed
with collaborators at the Lawrence Livermore National Laboratory and at the
University of Minnesota. The POWERWALL project team is lead by Thomas Ruwart.
Other members include David Porter, Kevin Edgar, Steven Anderson, Michael Palmer
from California Institute of Technology, Russell Cattelan, Thomas Jacobson, and Jeff
Stromberg.

6-110 POWER CHALLENGEarray

6

A-111

References A

POWER CHALLENGEarray References

Silicon Graphics publications:

POWER CHALLENGE™ Tech Report

POWER CHALLENGEarray™ Data Sheet

Onyx® and POWER Onyx™ Technical Report

Onyx Family Product Guide

Reality Station Data Sheet

IRISconsole™ Data Sheet

SHARE II™ Data Sheet

Other Publications:

Forest Baskett and John Hennessy, “Microprocessors: From Desktops to
Supercomputers”, Science, August 1993, pp 864-871.

Don Tolmie and John Renwick, “HiPPI: Simplicity Yields Success”, IEEE Network,
January 1993, pp 28-32.

EISA HiPPI Network Interface Card Data Sheet - Essential Communications

A-112 POWER CHALLENGEarray

A

Serial HiPPI Media Interconnect Card Data Sheet - Essential Communications

“Using MPI”

“PVM: Parallel Virtual Machine: A User’s Guide and Tutorial for Networked
Parallel Computing”

xHPF Parallelizer - Applied Parallel Research

PGHPF Writeup from Portland Group

TotalView Release Notes - BBN System and Technologies

PerfAcct Version 1.0 User’s Guide - Instrumental

David Porter et al, “Attacking a Grand Challenge In Computational Fluid Dynamics
on a Cluster of Silicon Graphics Challenge Machines,”

Michael Berry et al, “Algorithmic Design on the Cedar Multiprocessor,”

Message-Passing Interface (MPI) References

Silicon Graphics man page:

man mpi

WWW home page for POWER CHALLENGEarray:

http:/www.sgi.com/Products/PowerChallengeArray

Book on MPIs:

Using MPI

WWW home page for public domain MPI:

http://www.mcs.anl.gov/mpi/index.html

Parallel Virtual Machine (PVM) References

WWW home page for POWER CHALLENGEarray:

http://www.sgi.com/Products/PowerChallengeArray

References A-113

A

Getting Started with the POWER CHALLENGEarray

Book on PVM:

PVM

WWW home page for public domain PVM

http://www.epm.ornl.gov/pvm/pvm_home.html

High Performance FORTRAN (HPF) References

WWW home page for PGI:

http://www.pgroup.com

WWW home page for APR

http://www.infomall.org/apri

Distributed Batch Processing and Load Balancing Tools References

WWW home page for Platform Computing Corporation:

http://www.platform.com

WWW home page for Instrumental Inc.:

http://www.instrumental.comi

A-114 POWER CHALLENGEarray

A

Reader Comment Sheet

Dear Customer,

At Silicon Graphics we want to provide you with the best possible
documentation for our products. To this end, we solicit your comments on this
report. We would appreciate your telling us about any errors in the content.
Also, please tell us of any material that you feel should be there but isn’t.
Comments on POWER CHALLENGEarray Tech Report can be E-mailed, faxed, or
sent to:

POWER CHALLENGEarray Marketing

Silicon Graphics
MS 8L-580
2011 N. Shoreline Blvd.
Mountain View, CA 94043
FAX: (415) 390-3562
E-Mail: krsik@asd.sgi.com

POWER CHALLENGEarray

